Math, asked by priyam1577, 1 year ago

For what value of k, the following system of equations have (i) a unique solution (ii) no solution
2x+ky= 11 3x-5y= 7​

Answers

Answered by Anonymous
88

Solution:

We have been given two equations 2x + ky = 11 & 3x - 5y = 7.

∴ We have to find a unique Solution for system of equation.

(i)For Unique solution, We have;

  • a1/a2 ≠ b1/b2

Here, a1 = 2 ,b1 = k & a2= 3 , b2 = 5

Substitute obtained values in Equation:

⇒ a1/a2 ≠ b1/b2

⇒ 2/3 ≠ k/-5

⇒ 3k≠ 10

∴ k = -10/3

(ii)For No Solution, We have ;

  • a1/a2 = b1/b2 ≠ c1/c2

Here, a1 = 2 ,b1 = k & a2= 3 , b2 = - 5 & c1 = 11 , c2 = 7

Substitute obtained values in Equation:

⇒a1/a2 = b1/b2 ≠ c1/c2

⇒ 2/3 = k/-5 ≠ 11/7

⇒ 2/3 = k/-5

⇒ 3k = -10

⇒ k = -10/3

k = -10/3


somyahota1425: 35
somyahota1425: 10
somyahota1425: hi
somyahota1425: hello
somyahota1425: like that too
somyahota1425: you are not doing anything
somyahota1425: lv
somyahota1425: ok
ssyed90: class 10 ka hai ye math
anita628: ook
Answered by Anonymous
63

LINEAR EQUATIONS :

( i ). For unique solution,

 \mathsf{\dfrac{a_1}{a_2}}  \mathsf{\dfrac{b_1}{b_2}}

Here,

2x + ky - 11 = 0 , 3x - 5y - 7 = 0

 \mathsf{a_1} = 2,  \mathsf{a_2} = 3,  \mathsf{b_1} = k,  \mathsf{b_2} = - 5,  \mathsf{c_1} = - 11,  \mathsf{c_2} = - 7

Now,

 \mathsf{\dfrac{2}{3}}  \mathsf{\dfrac{k}{-5}}

 \mathsf{k\:=\:{\dfrac{2*(-5)}{3}}}

 \boxed{\mathsf{k\:=\:{\dfrac{-10}{3}}}}

( ii ). For no solution,

 \mathsf{\dfrac{a_1}{a_2}} =  \mathsf{\dfrac{b_1}{b_2}}  \mathsf{\dfrac{c_1}{c_2}}

 \mathsf{\dfrac{2}{3}} =  \mathsf{\dfrac{k}{-5}}  \mathsf{\dfrac{-11}{-7}}

For  \mathsf{\dfrac{k}{-5}} \mathsf{\dfrac{-11}{-7}} ,

 \boxed{\mathsf{k\:=\:{\dfrac{55}{7}}}}

For  \mathsf{\dfrac{2}{3}} =  \mathsf{\dfrac{k}{-5}}

 \boxed{\mathsf{k\:=\:{\dfrac{-10}{3}}}}


anurag23948: kis class ka hai ye maths
Anonymous: 10th, Now no more comments. ❌
anita628: okkh
Similar questions