For what value of k the polynomial 2x^3-kx^2+5x+6 is exactly divisible by x+2
Answers
Answer:
K = - 1
Step-by-step explanation:
SINCE IT IS EXACTLY DIVISIBLE BY (x +2)
SO,
POLYNOMIAL = 0 IF ( x = - 2 ).
NOW ,
ON FURTHER SOLVING WE WILL GET :
- 2 - K - 5 +6 = 0 .
K = - 1
HOPE THIS HELPS YOU
GIVEN :-
- P(x) = 2x³ - kx² + 5x + 6
TO FIND :-
- The value of k.
SOLUTION :-
➵ Let x + 2 = 0
➵ x = -2
Now put he value of x in P(x).
⇒ P(x) = 0
⇒ 2x³ - kx² + 5x + 6 = 0
⇒ 2 × (-2)³ - k × (-2)² + 5 ×(-2) + 6 = 0
⇒ 2 × (-8) - k × 4 - 10 + 6 = 0
⇒ -16 - 4k - 10 + 6 = 0
⇒ - 26 + 6 - 4k = 0
⇒ - 20 - 4k = 0
⇒ - 4k = 0 + 20
⇒ - 4k = 20
⇒ k = -20/4
⇒ k = -5
Hence the value of k is - 5
VERIFICATION :-
➵ Here we found k = (-5)
∴ Replace k as (-5) in P(x).
⇒ P(x) = 2x³ - kx² + 5x + 6
⇒ P(x) = 2x³ + 5x² + 5x + 6
Now put the value of x,
⇒ P(x) = 2x³ + 5x² + 5x + 6
⇒ P(-2) = 2 × (-5)³ + 5 ×(-2)² + 5 ×(-2) + 6
⇒ -16 + 20 - 10 + 6
⇒ 26 - 16 + 10
⇒ 26 - 26
⇒ 0
Hence we found the Remainder 0