For what value of m will x^2+mx-(m^2+m-32)=0 have equal roots
Answers
Answered by
0
roots of x² + mx -( m² +m -32) = 0 are equals
it means D = b² -4ac = 0
m² - 4( m² +m -32) = 0
m² -4m² -4m +128 = 0
-3m² -4m +128 = 0
3m² + 4m -128 = 0
use quadratic formula ,
m = { -4 ±√(16 +12×128) }/6
= { -4 ± 4√97}/6
= { -2±2√97}/3
it means D = b² -4ac = 0
m² - 4( m² +m -32) = 0
m² -4m² -4m +128 = 0
-3m² -4m +128 = 0
3m² + 4m -128 = 0
use quadratic formula ,
m = { -4 ±√(16 +12×128) }/6
= { -4 ± 4√97}/6
= { -2±2√97}/3
Answered by
0
for a quadratic equation to have equal roots ...discriminant should be equal to zero
b²-4ac=0
m²-4(m²+m-32)=0
-3m²-4m+128=0
3m²+4m-128=0
we know that m=-4±√(16+1536)/6
=-4±√1552/6
=-2±2√97/3
I hope this will help u :)
b²-4ac=0
m²-4(m²+m-32)=0
-3m²-4m+128=0
3m²+4m-128=0
we know that m=-4±√(16+1536)/6
=-4±√1552/6
=-2±2√97/3
I hope this will help u :)
Similar questions