For what value of x, two angles x + 7° and 2x + 11° are complementary?
Answers
Answered by
3
Step-by-step explanation:
We know that, sum of two complementary angles = 90°
∴ (2x – 7) + (x + 4) = 90°
2x - 7 + x + 4 = 90°
⇒ 2x + x – 7 + 4 = 90°
⇒ 3x – 3 = 90°
⇒ 3x = 90 + 3
⇒ 3x = 93
⇒ x = 93/3
x = 31
Hope this helps you buddy ✌️✌️✌️
Answered by
22
Answer
The value of x is 24.
Step-by-step explanation
To Find :-
- The value of x.
★ Solution
Given that,
- Two angles (x + 7)° and (2x + 11)° are complementary.
We know,
Sum of two complementary angles = 90°,
Therefore,
- (x + 7)° + (2x + 11)° = 90°
⇒ (x + 7) + (2x + 11) = 90
⇒ x + 7 + 2x + 11 = 90
⇒ x + 2x + 7 + 11 = 90
⇒ 3x + 7 + 11 = 90
⇒ 3x + 18 = 90
⇒ 3x = 90 - 18
⇒ 3x = 72
⇒ x = 72/3
⇒ x = 24
We got, The value of x is 24.
V E R I F I C A T I O N :-
- (x + 7) + (2x + 11) = 90
By putting the value of x and simplifying the L.H.S :-
⇒ (x + 7) + (2x + 11)
⇒ (24 + 7) + (2*24 + 11)
⇒ (24 + 7) + (48 + 11)
⇒ 31 + 59
⇒ 90
∴ L.H.S = R.H.S = 90
Hence, Verified!
Similar questions