Math, asked by kajalpr8564, 8 months ago

For what values of k, the roots of the equation x square + 4x + k= 0 are real

Answers

Answered by Anonymous
2

 \large\bf\underline{Given:-}

  • equation :- x² + 4x + k = 0

 \large\bf\underline {To \: find:-}

  • Value of k

 \huge\bf\underline{Solution:-}

≫ Equation = x² + 4x + k

where,

  • a = 1
  • b = 4
  • c = k

Condition for real roots:-

  • Discriminant = 0

✝️≫ Discriminant = b² - 4ac

»» b² - 4ac = 0

»» 4² - 4 × 1 × k = 0

»» 16 - 4k = 0

»» -4k = -16

»» 4k = 16

»» k = 16/4

  • k = 4.

\rule{200}3

\bf\boxed{ \begin{minipage}{6cm}Discriminant\:| \:Roots\\\bf\:b^2-4ac>0 -\:\:two\: real \:roots \\\bf\:b^2-4ac<0- \:\:imaginary \:roots\\\bf\:b^2-4ac=0-\:\:real\: roots \end{minipage}}

Answered by Anonymous
2

{ \huge{ \bold{ \underline{ \underline{ \blue{Question:-}}}}}}

For what values of k, the roots of the equation x square + 4x + k= 0 are real ..

{ \huge{ \bold{ \underline{ \underline{ \orange{Answer:-}}}}}}

Given : -

  • Equation = x² + 4x + k = 0

To Find : -

  • Value of k

Solution : -

\dashrightarrow\sf{{x}^{2}+4x+k}

Here : -

  • a = 1
  • b = 4
  • c = k

Formula Used : -

\leadsto\sf{{ \small{ \bold{ \bold{ \bold{ \red{{b}^{2}-4ac}}}}}}}

On Substituting : -

\dashrightarrow\sf{{(4)}^{2}-4(1) (k) =0}

\dashrightarrow\sf{16-4k=0}

\dashrightarrow\sf{-4k = -16}

\dashrightarrow\sf{k=\cancel\dfrac{-16}{-4}}

\leadsto\sf{{ \large{ \boxed{ \bold{ \bold{ \green{k=4}}}}}}}

✒So, the value of k is 4 ..

Similar questions