Math, asked by nagathanabhi, 4 months ago

For what values of x is -2/7 , x , -7/2 are in geometric progression

Answers

Answered by Steph0303
6

Answer:

For a sequence to be in Geometric Progression, the common ratio (r) must be equal.

Let a, b, c be in a Geometric Progression.

Then, the condition to be satisfied is:

\implies \boxed{ \dfrac{b}{a} = \dfrac{c}{b} = r}

where, 'r' is the common ratio.

Now, in the given question, the sequence is:

⇒ -2/7, x, -7/2

Applying the condition of G.P we get:

\implies \dfrac{ x }{ -2/7} = \dfrac{-7/2}{x}\\\\\\\implies x^2 = \dfrac{-7}{2} \times \dfrac{-2}{7}\\\\\\\implies x^2 = 1\\\\\\\implies \boxed{x = \sqrt{1} = \pm 1}

Hence the possible values of 'x' for the given sequence to be in Geometric Progression is: +1 & -1.

Answered by mathdude500
3

\large\underline\blue{\bold{Given \:  Question :-  }}

For what values of x is -2/7 , x , -7/2 are in geometric progression.

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\huge \red{AηsωeR } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

Concept used :-

If a, b c are in geometric progression or G. P. then

\sf \:  \dfrac{b}{a}  \:   = \dfrac{c}{b}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

\bf \: Since,  \: \dfrac{2}{7} \: ,  \: x  \: ,  \: - \: \dfrac{7}{2}  \: are  \: in \:  geometric  \: progression.

\bf \:  ⟼  \therefore \: \dfrac{x}{\dfrac{ - 2}{7} } \:  =  \:  \dfrac{ - 7}{\dfrac{2}{x} }

\bf \:  ⟼ \dfrac{ \cancel{ - 7}x}{ \cancel{2}}  = \dfrac{ \cancel{ - 7}}{ \cancel{2}x}

\bf\implies \: {x}^{2}  = 1

\bf\implies \:x \:  =  \:  \pm \: 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions