Math, asked by santosh76verma, 1 day ago

for which values of a and b does the following pair of linear equation have an infinity no. of solutions 2x+3y=5 (a+b)x+ (a-b)y = ( 2a+b-1)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation of lines are

\rm \implies\:2x + 3y = 5 \:

and

\rm :\longmapsto\:(a + b)x + (a - b)y = 2a + b - 1

It is given that, System of equations have infinitely many solutions.

We know that,

\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0

Then

Two lines have infinitely many solutions, iff

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2}  =  \dfrac{c_1}{c_2} \: }}}

Here,

  • • a₁ = 2

  • • a₂ = a + b

  • • b₁ = 3

  • • b₂ = a - b

  • • c₁ = 5

  • • c₂ = 2a + b - 1

So, on substituting the values, we get

\rm :\longmapsto\:\dfrac{2}{a + b}  = \dfrac{3}{a - b}  = \dfrac{5}{2a + b - 1}

Taking first and second member, we get

\rm :\longmapsto\:\dfrac{2}{a + b}  = \dfrac{3}{a - b}

\rm :\longmapsto\:3(a + b) = 2(a - b)

\rm :\longmapsto\:3a + 3b= 2a - 2b

\rm :\longmapsto\:3a  - 2a=  - 3b - 2b

\rm \implies\:\boxed{ \tt{ \: a \:  =  \:  -  \: 5b \: }} -  -  -  - (1)

Now, Taking second and third member, we get

\rm :\longmapsto\: \dfrac{3}{a - b}  = \dfrac{5}{2a + b - 1}

\rm :\longmapsto\:3(2a + b - 1) = 5(a - b)

\rm :\longmapsto\:6a + 5b - 5= 5a - 5b

\rm :\longmapsto\:6a - 5a = 5 - 5b - 5b

\rm :\longmapsto\:a = 5 - 10b

On substituting the value of a, from equation (1), we get

\rm :\longmapsto\: - 5b = 5 - 10b

\rm :\longmapsto\: - 5b +  10b  = 5

\rm :\longmapsto\: 5b  = 5

\bf\implies \:\boxed{ \tt{ \: b \:  =  \: 1 \: }}

On substituting the value of b, in equation (1), we get

\rm \implies\:\boxed{ \tt{ \: a \:  =  \:  -  \: 5 \: }}

Hence,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{a \:  =  \:  -  \: 5}  \\ \\ &\sf{b \:  =  \: 1} \end{cases}\end{gathered}\end{gathered}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0

then

1. Two lines are parallel iff

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \tt \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \ne \dfrac{c_1}{c_2} \: }}}

2. Two lines have unique solution iff

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \tt \:\dfrac{a_1}{a_2} \ne \dfrac{b_1}{b_2}  \: }}}

Similar questions