for which values of p and q does the following pair of linear equation have an infinite number of solution? 2x+3y=7 (p-q)x + (p+q)y=3p+q-2
Answers
Given equations :-
Here,
For a pair of linear equation to have infinitely many solutions :-
so we need,
or,
Also,
Substituting (1) we have,
Also,
Given equations :-
2x + 3y = 92x+3y=9
(p + q)x + (2p - q)y = 3(p + q + 1)(p+q)x+(2p−q)y=3(p+q+1)
Here,
\frac{a1}{a2} = \frac{2}{p + q}
a2
a1
=
p+q
2
\frac{b1}{b2} = \frac{3}{2p - q}
b2
b1
=
2p−q
3
\frac{c1}{c2} = \frac{9}{3(p + q + 1)}
c2
c1
=
3(p+q+1)
9
For a pair of linear equation to have infinitely many solutions :-
\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}
a2
a1
=
b2
b1
=
c2
c1
so we need,
\frac{2}{p + q} = \frac{3}{2p - q} = \frac{9}{3(p + q + 1)}
p+q
2
=
2p−q
3
=
3(p+q+1)
9
or,
\frac{2}{p + q} = \frac{3}{2p - q}
p+q
2
=
2p−q
3
= > 2(2p - q) = 3(p + q)=>2(2p−q)=3(p+q)
= > 4p - 2q = 3p + 3q=>4p−2q=3p+3q
= > p = 5q....(1)=>p=5q....(1)
Also,
\frac{3}{2p - q} = \frac{9}{3(p + q + 1)}
2p−q
3
=
3(p+q+1)
9
= > 9(p + q + 1) = 9(2p - q)=>9(p+q+1)=9(2p−q)
= > p + q + 1 = 2p - q=>p+q+1=2p−q
= > 2p - p = q + q + 1=>2p−p=q+q+1
= > p = 2q + 1=>p=2q+1
Substituting (1) we have,
5q = 2q + 15q=2q+1
q = \frac{1}{3}q=
3
1
Also,
p = 5q = 5 \binom{1}{3} = \frac{5}{3}p=5q=5(
3
1
)=
3
5
p = \frac{5}{3} \: and \: q = \frac{1}{3}p=
3
5
andq=
3
1