Math, asked by majumder5981, 8 months ago

Forces of magnitudes 5 and 3 units acting in the directions 6i + 2j + 3k and 3i - 2j + 6krespectively act on a particle which is displaced from the point (2,2, -1) to (4,3,1). Find thework done​

Answers

Answered by prince5132
25

GIVEN :-

  • Magnitude of forces = 5 and 3 units.
  • direction of forces = 6i + 2j + 3k and 3i - 2j + 6k.

TO FIND :-

  • The total work done.

SOLUTION :-

direction of force of magnitude 5 units = 6i + 2j + 3k.

Direction of force of magnitude 3 units = 3i - 2j + 6k.

To Find the Total work done, we have to find the resultant force of vector and displacement vector. Let's start with the resultant force,

★ Let us considered that the resultant force be vector F.

Now,

 \\  \implies  \displaystyle \: \tt \:  \vec{F} = \bigg( 5 \dfrac{6 \hat{i} + 2 \hat{j} + 3 \hat{k}}{ \sqrt{(6) ^{2}  + (2) ^{2} + (3) ^{2} } } \bigg) +  \bigg(3 \dfrac{3 \hat{i}  - 2 \hat{j} + 6\hat{k}}{ \sqrt{(6) ^{2}  +  ( - 2) ^{2}  + (3) ^{2} } } \bigg)\\  \\

  \implies  \displaystyle \: \tt \:  \vec{F} = \bigg( 5 \dfrac{6 \hat{i} + 2 \hat{j} + 3 \hat{k}}{ \sqrt{36 + 4 + 9} } \bigg) +  \bigg(3 \dfrac{3 \hat{i}  - 2 \hat{j} + 6\hat{k}}{ \sqrt{36 + 4 + 9} } \bigg)\\  \\  \\  \implies  \displaystyle \: \tt \:  \vec{F} = \bigg( 5 \dfrac{6 \hat{i} + 2 \hat{j} + 3 \hat{k}}{ \sqrt{ 49} } \bigg) +  \bigg(3 \dfrac{3 \hat{i}  - 2 \hat{j} + 6\hat{k}}{ \sqrt{49} } \bigg)\\   \\

 \implies  \displaystyle \: \tt \:  \vec{F} = \bigg( 5 \dfrac{6 \hat{i} + 2 \hat{j} + 3 \hat{k}}{ 7 } \bigg) +  \bigg(3 \dfrac{3 \hat{i}  - 2 \hat{j} + 6\hat{k}}{ 7 } \bigg)\\  \\

 \displaystyle \: \tt \:   \implies \: \vec{F} =  \bigg(\dfrac{30 \hat{i} + 10 \hat{j} + 15 \hat{k}}{7}  \bigg) +  \bigg(\dfrac{9 \hat{i}  - 6 \hat{j} + 18 \hat{k}}{7} \bigg) \\  \\

  \displaystyle \: \tt \:   \implies \: \vec{F} =  \bigg(\dfrac{30 \hat{i} + 10 \hat{j} + 15 \hat{k} + 9 \hat{i} - 6 \hat{j} + 18 \hat{k}}{7} \bigg) \\  \\

  \displaystyle \: \tt \:   \implies \: \vec{F} =  \dfrac{39 \hat{i} + 4 \hat{j} + 33 \hat{k}}{7} \\  \ \\

 \displaystyle \: \bf \:  \implies \: \boxed{ \vec{F} =   \dfrac{1}{7}  \bigg\lgroup39 \hat{i} + 4 \hat{j} + 33 \hat{k} \bigg \rgroup} \\

Hence the resultant force is   \displaystyle \: \bf \:   \:  \vec{F} =   \dfrac{1}{7}  \bigg\lgroup39 \hat{i} + 4 \hat{j} + 33 \hat{k} \bigg \rgroup

★ Now let the displacement vector be 'b'. Now as we know that forces are displaced from point (2,2,-1) to (4,3,1) so the displacement vector will be,

 \\  \displaystyle \tt \implies \vec{d} =  \bigg(4 \hat{i} + 3 \hat{j}  +  \hat{k} \bigg)-  \bigg(2  \hat{i} + 2 \hat{j}   -  \hat{k} \bigg) \\  \\

 \displaystyle \tt \implies \vec{d} =  4 \hat{i} + 3 \hat{j}  +  \hat{k} -  2  \hat{i}  -  2 \hat{j}    +   \hat{k} \\  \\

\displaystyle \tt \implies \vec{d} =  4 \hat{i} -  2 \hat{i}  +3 \hat{j} - 2 \hat{j}   + \hat{k}  +   \hat{k}  \\  \\

 \displaystyle \bf \: \implies  \boxed{ \vec{d} = {2 \hat{i} +  \hat{j}  + 2 \hat{k}}}  \\ \\

Hence the displacement vector is  \displaystyle \bf \: \bigg \lgroup   \vec{d} = {2 \hat{i} +  \hat{j}  + 2 \hat{k}}  \bigg \rgroup \\

★ Now we will use the formula of total work done i.e Total work done = Displacement vector × Resultant force.

\\ \displaystyle \tt \implies \:  \vec{d} \times  \vec{F} \\  \\

\displaystyle \tt \implies \: \dfrac{1}{7}  \bigg\lgroup \big(39 \hat{i} + 4 \hat{j} + 33 \hat{k} \big) \times  \big(2 \hat{i} + \hat{j} + 2 \hat{k} \big)  \bigg \rgroup  \\  \\

\displaystyle \tt \implies \: \dfrac{1}{7}  \big(78 + 4 + 66 \big)  \\  \\

\displaystyle \tt \implies \: \dfrac{1}{7} (148) \\  \\

 \displaystyle \tt \implies \:  \boxed{ \red{ \bf \: Total  \: work  \: done  \: = \dfrac{\: 148}{7} units }} \\ \\

Hence the total work done is 148/7 units.


MisterIncredible: Amazing (◍•ᴗ•◍)
ButterFliee: Nice :)
Anonymous: Always Awesome ♥️♥️♥️
BloomingBud: wonderful answer
Answered by ItzDeadDeal
5

Answer:

Given :

▪ A vector quantity has been provided.

\bigstar\:\underline{\boxed{\bf{\red{\vec{A}=-3\hat{i}+2\hat{j}+\sqrt{3}\hat{k}}}}}

To Find :

▪ Magnitude of the given vector quantity.

SoluTion :

If Ax, Ay, Az are the rectangular components of vector A and î, j, k are are the unit vectors along X-, Y- and Z-axis respectively, then

</p><p>\dag\bf\:\vec{A}=A_x\hat{i}+A_y\hat{j}+A_z\hat{k}† </p><p>

Magnitude of vector :

\begin{gathered}\dashrightarrow\bf\:A=\sqrt{(A_x)^2+(A_y)^2+(A_z)^2}\\ \\ \dashrightarrow\sf\:A=\sqrt{(-3)^2+(2)^2+(\sqrt{3})^2}\\ \\ \dashrightarrow\sf\:A=\sqrt{9+4+3}\\ \\ \dashrightarrow\sf\:A=\sqrt{16}\\ \\ \dashrightarrow\underline{\boxed{\bf{\green{A=4\:unit}}}}\:\orange{\bigstar}\end{gathered} </p><p>

 \huge \sf \pink{Hence \:  Done !!}

Similar questions