Math, asked by Introduction, 11 months ago

form the quadratic polynomial whose zeros are 4 and -6​

Answers

Answered by Sudhir1188
7

Step-by-step explanation:

]\large{\boxed{\sf{\red{hope\:this\:helps\:you.  }}}}

Attachments:
Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\pink{A  \: quadratic \:  function \:  is  \: one  \: of \:  the form} \\  \\   \sf\red{f(x) =  {ax}^{2} + bx + c \:  where \:  a, b, and c} \\  \\  \sf\pink{ are  \: numbers  \: with \:  a not \: equal \: to \: 0 } \\  \\  \sf\red{here  \: sum\: of \:the \:roots\:\alpha =4 \: and \:  \beta = - 6 } \\  \\ \sf\red{product \:of\:the\:roots\:\alpha  + \beta = 4 + ( - 6) } \\  \\ \sf\red{ =  > 4 - 6 =  - 2} \\  \\ \sf\red{\alpha \times \beta} \\  \\ \sf\pink{ =  4 \times ( - 6) =  - 24}

\sf\red{ \alpha \: and \: \beta \: are \: the \: roots\: of \: the \: {ax}^{2} + bx + c } \\  \\ \sf\red{ answer = {x}^{2} +2x - 24 } \\  \\ \large\boxed{ \fcolorbox{green}{yellow}{hope \: it \: help \: you}}

Similar questions