Math, asked by Kondurubalaji, 1 year ago

Formula for (x-y-z)2.

Answers

Answered by hotelcalifornia
100

Answer:

The formula for (x-y-z)^2 is equal to x^2+y^2+z^2-2xy+2yz-2zx  

Solution:

Formula for (x-y-z)^2

(x-y-z)^2  

=(x)^2+(-y)^2+(z)^2+2.x.(-y)+2.(-y).(-z)+2.(-z).x

=x^2+y^2+z^2-2xy+2yz-2zx  

Proof:

Let us take (x-y)=p

Substituting this in the above given formula,

(x-y-z)^2=(p-z)^2\\\\=p^2+z^2-2pz

We know that, (x-y)=p, substitute this in the above one, we get,

\begin{array} { c } { = ( x - y ) ^ { 2 } + z ^ { 2 } - 2 p z } \\\\ { = x ^ { 2 } + y ^ { 2 } - 2 x y + z ^ { 2 } - 2 p z } \\\\ { = x ^ { 2 } + y ^ { 2 } - 2 x y + z ^ { 2 } - 2 ( x - y ) z } \\\\ { = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 2 x y - 2 x z + 2 y z } \\\\ { ( x - y - z ) ^ { 2 } = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } - 2 x y + 2 y z - 2 x z } \end{array}

Hence, proved the above driven formula.

Thus, the formula for (x-y-z)^2 will be  

x^2+y^2+z^2-2xy+2yz-2xz

Answered by mysticd
45

Answer:

(x-y-z)² = x²+y²+z²-2xy+2yz-2zx

Step-by-step explanation:

(x-y-z)²

= [x+(-y)+(-z)]²

= +(-y)²+(-z)²+2x(-y)+2(-y)(-z)+2(-z)x

/* By algebraic identity:

(a+b+c)²=+++2ab+2bc+2ca */

= ++-2xy+2yz-2zx

Therefore,

(x-y-z)² = x²+y²+z²-2xy+2yz-2zx

Similar questions