Math, asked by symashah000, 1 month ago

Formula of tan (A-B-C). ​

Answers

Answered by chauhanvishal1078
1

Step-by-step explanation:

Answer: By using the formula of tan (α + β) we can easily expand tan (A + B + C). Let us recall the formula of tan (α + β) = tan α + tan β/1 - tan α tan β. Therefore, the expansion of tan (A + B + C) = tan A + tan B + tan C - tan A tan B tan C/ 1 - tan A tan B- tan C tan A - tan B tan C.

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:tan(A - B - C)

Let we assume that A - B - C = D

So, it means we have to find the value of tanD

Consider,

\rm :\longmapsto\:A - B - C = D

can be rewritten as

\rm :\longmapsto\:A - D = B + C

\rm :\longmapsto\:tan(A - D)= tan(B + C)

\rm :\longmapsto\:\dfrac{tanA - tanD}{1 + tanAtanD}  = \dfrac{tanB + tanC}{1 - tanBtanC}

Let we assume that

tanA = a

tanB = b

tanC = c

tanD = d

So, above can be rewritten as

\rm :\longmapsto\:\dfrac{a - d}{1 + ad}  = \dfrac{b + c}{1 - bc}

\rm :\longmapsto\:(a - d)(1  -  bc) = (1 + ad)(b  + c)

\rm :\longmapsto\:a - abc - d + dbc =b + c + abd + acd

\rm :\longmapsto\:a - b - c - abc  = abd + acd + d - dbc

\rm :\longmapsto\:a - b - c - abc  = d(ab + ac+ 1 - bc)

\rm :\implies\:d = \dfrac{a - b - c - abc}{1 + ab - bc + ca}

So, on substituting the values of a, b, c and d, we get

\rm :\implies\:tanD= \dfrac{tanA - tanB - tanC- tanAtanBtanC}{1 + tanAtanB - tanBtanC + tanCtanA}

On substituting the value of D = A - B - C, we get

\rm :\implies\:tan(A - B - C)= \dfrac{tanA - tanB - tanC- tanAtanBtanC}{1 + tanAtanB - tanBtanC + tanCtanA}

Hence, derived

Additional Information :-

\underbrace{\boxed{ \tt{tan(A + B  + C)= \dfrac{tanA + tanB + tanC- tanAtanBtanC}{1 - tanAtanB - tanBtanC - tanCtanA}}}}

\underbrace{\boxed{ \tt{sin(A + B + C) = cosAcosBcosC(tanA + tanB + tanC - tanAtanBtanC}}}

\underbrace{\boxed{ \tt{cos(A + B + C) = cosAcosBcosC(1 - tanAtanB - tanBtanC - tanCtanA}}}

Similar questions