Math, asked by smitha12, 1 year ago

formulas for trigonometry ​

Answers

Answered by Anonymous
4

Answer:

Formulas for Trigonometry are :

____________________________

{\sf{\bigstar \ \ sin \theta = {\dfrac{Perpendicular}{Hypotenuse}}}}

____________________________

{\sf{\bigstar \ \ cosec \theta = {\dfrac{Hypotenuse}{Perpendicular}}}}

____________________________

{\sf{\bigstar \ \ cos \theta = {\dfrac{Base}{Hypotenuse}}}}

____________________________

{\sf{\bigstar \ \ sec \theta = {\dfrac{Hypotenuse}{Base}}}}

____________________________

{\sf{\bigstar \ \ tan \theta = {\dfrac{Base}{Perpendicular}}}}

____________________________

{\sf{\bigstar \ \ cot \theta = {\dfrac{Perpendicular}{Base}}}}

____________________________

{\sf{\bigstar \ \ tan \theta = {\dfrac{sin \theta}{cos \theta}}}}

____________________________

{\sf{\bigstar \ \ cot \theta = {\dfrac{cos \theta}{sin \theta}}}}

____________________________

{\sf{\bigstar \ \ sin^2 \theta + cos^2 \theta = 1}}

\implies{\sf{sin^2 \theta = 1 - cos^2 \theta}}

\implies{\sf{cos^2 \theta = 1 - sin^2 \theta}}

____________________________

{\sf{\bigstar \ \ 1 + tan^2 \theta = cot^2 \theta}}

\implies{\sf{1 = cot^2 \theta - tan^2 \theta}}

\implies{\sf{tan^2 \theta = cot^2 \theta - 1}}

____________________________

{\sf{\bigstar \ \ 1 + cot^2 \theta = cosec^2 \theta}}

\implies{\sf{1 = cosec^2 \theta - cot^2 \theta}}

\implies{\sf{cot^2 \theta = cosec^2 \theta - 1}}

____________________________

Answered by Anonymous
254

\huge{\orange{\underline{\pink{\mathscr{Radhe}}}}}\huge{\orange{\underline{\green{\mathscr{Radhe}}}}}

\\

\pink{Here \:is\: your}

\huge{\orange{\underline{\red{\mathscr{Answer}}}}}

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

\\

-:\:\:Formulas\:For\:Trigonometry\:\::-

\\

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

\\

sin⊖ = \frac{Perpendicular}{Hypotenuse}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

cosec⊖ = \frac{Hypotenuse}{Perpendicular}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

cos⊖ = \frac{Base}{Hypotenuse}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

sec⊖ = \frac{Hypotenuse}{Base}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

tan⊖ = \frac{Base}{Perpendicular}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

cot⊖ = \frac{Perpendicular}{Base}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

tan⊖ = \frac{sin⊖}{cos⊖}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

cot⊖ = \frac{cos⊖}{sin⊖}

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

sin²⊖ + cos²⊖ = 1

\implies sin²⊖ = 1 - cos²⊖

\implies cos²⊖ = 1 - sin²⊖

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

1 + tan²⊖ = cos²⊖

\implies 1 = 1 - cot²⊖ - tan²⊖

\implies tan²⊖ = cot²⊖ -1

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\\

1 + cot²⊖ = cosec²⊖

\implies 1 = cosec²⊖ - cot²⊖

\implies cot²⊖ = cosec²⊖ -1

\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions