Physics, asked by haribaijutb108, 1 day ago

Four charges 5µC, 5μC, -5µC, -5μC are placed at the corners of A, B, C, D of a square of side 1m. Calculate the electric field intensity at the center of the square.​

Answers

Answered by Sayantana
3

Electric field

  • Direction is away from positive charge and towards the negative.
  • It is a vector quantity.
  • \rm E = \dfrac{kq}{r^2}

where , \rm q = 5\times 10^{-6}, r =\dfrac{a}{\sqrt{2}}

Solution

Refer the attached image resultant direction by every charge.

\to\rm \vec{E_{net}} = \vec{E_A} + \vec{E_B} + \vec{E_C} +\vec{E_D}

By adding the vectors we get;

\to\rm E_{net} = \sqrt{ (2E)^2 +(2E)^2 + 2(E)(E)cos90\degree}

\to\rm E_{net} = \sqrt{ (2E)^2.(1+1)+0}

\to\sf E_{net} = 2\sqrt{2} \:  E

\to\rm E_{net} = 2\sqrt{2} \:  \times \dfrac{k\times 5\times 10^{-6}}{\bigg(\dfrac{a}{\sqrt{2}}\bigg)^2}

\to\rm E_{net} = 2\sqrt{2} \: \times \dfrac{9\times 10^9\times 5\times 10^{-6}}{\bigg(\dfrac{a^2}{2}\bigg)}

\to\rm E_{net} = 2\sqrt{2} \: \times \dfrac{45\times 10^3\times 2}{1^2}

\to\rm E_{net} = 2\sqrt{2} \: \times 90\times 10^3

\to\rm E_{net} = 18\sqrt{2} \times 10^4

\implies\bf E_{center} = 18\sqrt{2} \times 10^4 \: \hat{-j}

-------------------

Attachments:
Answered by MuskanJoshi14
2

Explanation:

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{VERIFIED✔}}}

Electric field

Direction is away from positive charge and towards the negative.

It is a vector quantity.

\rm E = \dfrac{kq}{r^2}

where , \rm q = 5\times 10^{-6}, r =\dfrac{a}{\sqrt{2}}

Solution

Refer the attached image resultant direction by every charge.

\to\rm \vec{E_{net}} = \vec{E_A} + \vec{E_B} + \vec{E_C} +\vec{E_D}

By adding the vectors we get;

\to\rm E_{net} = \sqrt{ (2E)^2 +(2E)^2 + 2(E)(E)cos90\degree}

\to\rm E_{net} = \sqrt{ (2E)^2.(1+1)+0}

\to\sf E_{net} = 2\sqrt{2} \:  E

\to\rm E_{net} = 2\sqrt{2} \:  \times \dfrac{k\times 5\times 10^{-6}}{\bigg(\dfrac{a}{\sqrt{2}}\bigg)^2}

\to\rm E_{net} = 2\sqrt{2} \: \times \dfrac{9\times 10^9\times 5\times 10^{-6}}{\bigg(\dfrac{a^2}{2}\bigg)}

\to\rm E_{net} = 2\sqrt{2} \: \times \dfrac{45\times 10^3\times 2}{1^2}

\to\rm E_{net} = 2\sqrt{2} \: \times 90\times 10^3

\to\rm E_{net} = 18\sqrt{2} \times 10^4

\implies\bf E_{center} = 18\sqrt{2} \times 10^4 \: \hat{-j}

-------------------

 \pink{\boxed{I \:Hope\: it's \:Helpful}}

{\sf{\bf{\blue{@Muskanjoshi14࿐}}}}

Attachments:
Similar questions