Math, asked by RITABORI, 1 month ago

Frame an equation : A two digit number having x at ten’s digit and y at units digit is 4 times the sum of the digit.​

Answers

Answered by NIKASTHEEMPORER
1

Answer:

yx = 4(y+x) is your answerrrr

Answered by AlluringKitty
11

Answer:

  • The required two digit number be 83

Step-by-step explanation:

 \underline{ \rule{80mm}{1mm}}

Given information

  • A two digit number having tens digit be x and units digit be y
  • Y at units digit is 4 times of the sum of the digit.

Need to find out

  • Two digit number?

Explanation

  • we can take two digit number be 10x + y where x is ten's place & y is units place from the above nentioned data .Inter - changing the digit means writing the number be 10y + x where y is ten's place & x is units place

Solution

Tow digit number ten's digit exceeds twice the unit's digit by 2 , the number obtained by inter - changing the digit is 5 more then three times the sum of the digit .

❍Suppose the two-digit number is given by 10x + y

 \underline{ \bigstar \pmb{ \sf \:According \:  to  \: the \:  \:  question }}

The relation between x&y

 \dashrightarrow \:  \text{x = 2y + 2}\:  \: \dots \dots  (\bf{eq}^{n} -  1)

 \pmb{ \tt{After  \: inter  - \:  changing}}

 \dashrightarrow \text{10y + x = 3x + 3y + 5}  \:  \: \dots \dots  (\bf{eq}^{n} -  2)

 \pmb{ \sf{Now  \: simplifying  \: equation  \: (ii)  \: we  \: get , }}

 \\ \dashrightarrow \tt7y - 2(2y + 2) = 5 \\  \\ \dashrightarrow \tt7y - 4y - 4 = 5 \\  \\ \dashrightarrow \tt3y = 5 + 4 \\  \\\dashrightarrow \tt3y = 9 \\  \\  \dashrightarrow \tt \: y =   \cancel\frac{9}{3}  \\  \\   \pink{ \dashrightarrow \tt\boxed{\boxed{ \frak{y = 3}}}} \\  \\  \\  \\  \\  \pmb {\sf \: Putting  \: y=3 \:  in \:  equation  \: (i) \:  we  \: get, } \\  \\  \\ \dashrightarrow \tt \: x = 2y + 2 \\  \\ \dashrightarrow \tt \: x = 2 \times 3 + 2 \\  \\\dashrightarrow \tt \: x = 6 + 2  \\  \\  \pink{\dashrightarrow \tt \: x = 8} \\

 \pmb{ \sf{So,  \: the  \: digit   \: formed \:  is ,}}

 \\   \sf:  \longmapsto \: 10x + y \\  \\   \sf: \longmapsto10(8) + 3 \\  \\ \sf:  \longmapsto80 + 3 \\  \\  \large \pink{: \longmapsto} \boxed{ \boxed{83}} \bigstar

 \fbox{ \boxed{  \text{Hence the required two digit number  is 83}}} \bigstar

  \underline{  \rule{30mm}{1mm}} \underbrace{ \boxed{ \pink{ \frak{ItzDipti }}}}_ {\sf{ \boxed{ \sf \: XxMrZombiexX}}}  \underline{\rule{30mm}{1mm}}

Similar questions