Math, asked by dj12387, 10 months ago

Frd s h J x jjbvzsdffcfhj​

Attachments:

Answers

Answered by Anonymous
3

Question :-

If log [ (x + y)/3 ] = 1/2 [log x + log y ], then find the value of x/y + y/x.

Solution :-

log \dfrac{x + y}{3}  =  \dfrac{1}{2}  \bigg(log \ x + log \ y \bigg)

 \implies 2log \dfrac{x + y}{3} = log \ x + log \ y

 \implies log \bigg( \dfrac{x + y}{3}  \bigg)^{2} = log \ x + log \ y

[ Because n.log x = log x^n ]

 \implies log \bigg( \dfrac{x + y}{3}  \bigg)^{2} = log \ xy

[ Because log x + log y = log xy ]

Comparing on both sides

 \implies \bigg( \dfrac{x + y}{3}  \bigg)^{2} = xy

 \implies \dfrac{(x + y)^{2} }{3^{2} }  = xy

 \implies \dfrac{ {x}^{2}  +  {y}^{2} + 2xy }{9 }  = xy

[ Because (x + y)² = x² + y² + 2xy ]

⇒ x² + y² + 2xy = 9xy

⇒ x² + y² = 9xy - 2xy

⇒ x² + y² = 7xy

 \implies \dfrac{ {x}^{2}  +  {y}^{2}}{xy }  = 7

It can be written as :

 \implies \dfrac{ {x}^{2} }{xy }  +  \dfrac{ {y}^{2} }{xy}  = 7

 \implies  \boxed{\dfrac{x }{y }  +  \dfrac{ y}{x}  = 7}

Hence, the value of x/y + y/x is 7.

Answered by RvChaudharY50
75

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  • log(x+y)/3 = 1/2(logx + logy)

\Large\underline\mathfrak{Question}

  • x/y + y/x ?

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

__________________

\red{\bold{we\:know\:that:--}}

\orange{\bold{Product\:Rule\:Law:}}

loga (MN) = loga M + loga N

\green{\bold{Power\:Rule\:Law:}}

IogaM^(n) = n Ioga M

● (x+y)² = x² + y² + 2xy

_________________________

\boxed{\fcolorbox{white}{pink}{ANSWER:-}}

 log( \frac{x + y}{3} )  =  \frac{1}{2} ( log(x)  +  log(y) ) \\  \\ \red\leadsto  \: 2log( \frac{x + y}{3}  ) = ( log(x)  +  log(y) ) \\  \\ \:\red\leadsto \:  (log \frac{x + y}{3} )^{2}  = log(x \times y) \\  \\   \red{\textbf{comparing \: now}} \\  \\ \red\leadsto \:  \frac{(x + y)^{2} }{9}  =  {xy}^{2}  \\  \\ \red\leadsto \:  {x}^{2}  +  {y}^{2}  + 2xy = 9 {xy}  \\  \\ \red\leadsto \:  {x}^{2}  +  {y}^{2}  = 9xy - 2xy \\  \\ \red\leadsto {x}^{2}  +  {y}^{2}  = 7xy \\  \\   \green{\text{Dividing by xy both sides, we get,}} \\  \\ \red\leadsto \:  \frac{ {x}^{ \cancel2} }{\cancel{x}y}  +  \frac{ {y}^{ \cancel2} }{ x\cancel{y}}  =  \frac{7 \cancel{xy}}{ \cancel{xy}}  \\  \\ \red\leadsto \:   \pink{\large\boxed{\bold{\frac{x}{y}  +  \frac{y}{x}  = 7}}}

\large\underline\textbf{Hope it Helps You.}

Similar questions