Math, asked by shuchithamn, 8 months ago

friends answer me this questions ​

Attachments:

Answers

Answered by mamtajainmamta23
0

Step-by-step explanation:

-5251.2"328+4646-66436

Answered by pubggrandmaster43
6

Answer:

1.\frac{\sqrt{34} }{5}

2.m= 11 , n  =-6

Step-by-step explanation:

                                                                                                               

  1. \frac{7}{\sqrt{17}-2\sqrt[]{3}  } - \frac{3}{\sqrt{17}+2\sqrt[]{3}  }

 => first step rationalize the denominator

 =>  (\frac{7}{\sqrt{17}-2\sqrt[]{3}  })(\frac{{\sqrt{17}+2\sqrt[]{3}  }}{{\sqrt{17}+2\sqrt[]{3}  }})  -( \frac{3}{\sqrt{17}+2\sqrt[]{3}  })(\frac{{\sqrt{17}-2\sqrt[]{3}  }}{{\sqrt{17}-2\sqrt[]{3}  }} )

 => \frac{\sqrt{17}+2\sqrt{3}  }{(\sqrt{17}^{2}-2\sqrt[]{3}  ^{2})} - \frac{\sqrt{17}-2\sqrt{3}  }{\sqrt{17}^{2}+2\sqrt[]{3}^{2}  }

 => \frac{\sqrt{17}+2\sqrt{3}  }{17-12} } - \frac{\sqrt{17}-2\sqrt{3}  }{17-12} }

 => \frac{\sqrt{17}+2\sqrt{3}  }{5} } - \frac{\sqrt{17}-2\sqrt{3}  }{5} }

 => \frac{\sqrt{34} }{5}

                                                                                                               

   2. \frac{5+2\sqrt{3}}{7+4\sqrt{3} }= m+n \sqrt{3}

   first step rationalize the denominator

 => (\frac{5+2\sqrt{3}} {7+4\sqrt{3} })(\frac{7-4\sqrt{3}}{7-4\sqrt{3}})  = m+n \sqrt{3}

 => \frac{(5+2\sqrt{3})(7-4\sqrt{3}) }{7^{2}-(4\sqrt{3})^{2} }= m+n \sqrt{3}

 => \frac{(5+2\sqrt{3})(7-4\sqrt{3}) }{49-48 }= m+n \sqrt{3}

 => \frac{(5+2\sqrt{3})(7-4\sqrt{3}) }{1 }= m+n \sqrt{3}

 => {(5+2\sqrt{3})(7-4\sqrt{3}) }= m+n \sqrt{3}

 =>{7(5+2\sqrt{3} ) - 4\sqrt{3}(5+2\sqrt{3} )  = m+n \sqrt{3}

 => 5 * 7 + 2\sqrt{3} * 7 - 2\sqrt{3}*4\sqrt{3} - 4\sqrt{3} *5  = m+n \sqrt{3}

 =>35 + 14\sqrt{3} - 24 - 20\sqrt{3}  = m+n\sqrt{3}

 =>11 - 6\sqrt{3}  = m + n\sqrt{3}

comparing the both side we get

m = 11  ,

n = - 6

                                                                                                             

please mark as brainliest                

Similar questions