Math, asked by Wreakit, 1 year ago

Friends. Please help me!!!
Find the value of k for which the quadratic equation
2kx^2-2(1+2k)x+(3+2k)
Has equal roots

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\tt{Value\:of\:k=\frac{1}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 2kx^{2}  -2(1 +2k)x + (3+2k) = 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 2kx^{2} - 2(1+2k)x + (3+2k)= 0} \\   \\   \tt{\circ  \: a = (2k)} \\   \tt{\circ \: b = -2(1+2k)}\\ \tt{\circ \:c = (3+2k)}\\    \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies (-(2+4k))^{2}  -  4 \times2k\times (3+2k)= 0 } \\  \\    \tt{: \implies \:  \cancel{16{k}^{2}}  + 4+16k - 24k  \cancel{-16k^{2} }= 0 } \\  \\  \tt{ : \implies \:  8k=4} \\  \\   \tt{: \implies k = \frac{4}{8}} \\  \\   \green{\tt{: \implies k = \frac{1}{2}}}

Similar questions