Math, asked by true32141, 1 year ago

friends solve this equation.​

Attachments:

Answers

Answered by ManeendraMahan
0

this is the answer. follow me

Attachments:
Answered by MaheswariS
0

Answer:

cos^{-1}(\frac{x-\frac{1}{x}}{x+\frac{1}{x}})=\pi-2\:tan^{-1}x

Step-by-step explanation:

Formula used:

cos2A=\frac{1-tan^2A}{1+tan^2A}

cos^{-1}(-x)=\pi-cos^{-1}x

Now,

cos^{-1}(\frac{x-\frac{1}{x}}{x+\frac{1}{x}})

=cos^{-1}(\frac{\frac{x^2-1}{x}}{\frac{x^2+1}{x}})

=cos^{-1}(\frac{x^2-1}{x^2+1})

=cos^{-1}[-(\frac{1-x^2}{1+x^2})]

................................................

Take

x=\tan\theta

then \theta=tan^{-1}x

...............................................

=cos^{-1}[-(\frac{1-\tan^2\theta}{1+\tan^2\theta})]

=cos^{-1}[-(cos2\theta)]

=\pi-cos^{-1}(cos2\theta)

=\pi-2\theta

=\pi-2\:tan^{-1}x

Similar questions