Math, asked by dk6489195, 1 month ago

From a circular sheet of radius 6cm , a circle of radius 4cm is removed, find the area of the remaining sheet​

Answers

Answered by ibrahimtrcg2020
1

Answer:                                                                                                                          20π cm² or 62.83 cm²

Step-by-step explanation:

Area of first circle =  πr²  

                             =  π×6² =36π cm²

Area of second circle =  πr²

                                   = π×4² =16π cm²

Area of remaining circle = 36π - 16π =20π cm²= 62.83 cm²

Answered by sakash20207
2

Area \:   of \:  big \: circle \:  = \pi \gamma  ^{2}  \\  \\ a \:  =  \frac{22}{7}  \:  \times 6 \:  \times  \: 6 \\ a = 113.14 \:  {cm}^{2}  \\ . \: Area \: of \: the \: small \: circle \:  = \pi \gamma {2}  \\ a \:  =  \:  \frac{22}{7}  \times 4 \times 4 \\  a \:  = 50.28 {cm}^{2}  \\ . \: Area \: of \: the \: remaining \: part \:  =  \\ Area \: of \: big \: crcle \:  - .Area \: of \:  \\ small \: circle \\ . \: Area \: of \: remaining \: part \:  =  \\ ( \: 113.14 \:  - 50.28 \: ) \: cm {2}  \\  . \: Area \: of \: remaining \: part \:  \\  = 62.86 {cm}^{2}

I HOPE THIS WILL HELP YOU.

Similar questions