Math, asked by saritasahu071979, 1 month ago

From a point on the ground, the angle of elevation of the top of tower is observed to be 60 dgree, from a point 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 45o. Find the height of the tower and its horizontal distance from the point of observation.​

Answers

Answered by alkavaishnav1984
0

Answer:

high frd tya hya hybrid hcd thu

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

From a point on the ground, the angle of elevation of the top of tower is observed to be 60°, and from a point 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 45°.

Let assume that

AB represents the tower with base A and top B.

and

C be any point on the ground, from where the angle of elevation of top of the tower is 60°.

➢ And D be point above C, 40 m vertically above, from where the angle of elevation of top of tower B is 45°.

Let assume that,

BE = x meter

AC = DE = y m

and CD = AE = 40 meter.

Now,

\red{\rm :\longmapsto\: In \:  \triangle \: BED, \: we \: have}

\rm :\longmapsto\:tan45 \degree \:  =  \: \dfrac{BE}{ED}

\rm :\longmapsto\:1 = \dfrac{x}{y}

\bf\implies \:y = x -  -  - (1)

Now, Consider

\red{\rm :\longmapsto\: In \:  \triangle \: ACB, \: we \: have}

\rm :\longmapsto\:tan60 \degree \:  =  \: \dfrac{AB}{AC}

\rm :\longmapsto\: \sqrt{3} = \dfrac{40 + x}{y}

\rm :\longmapsto\: \sqrt{3} = \dfrac{40 + x}{x}  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \: x = y \}

\rm :\longmapsto\: \sqrt{3}x = 40 + x

\rm :\longmapsto\: \sqrt{3}x - x = 40

\rm :\longmapsto\: (\sqrt{3} -1) x = 40

\rm :\longmapsto\:x = \dfrac{40}{ \sqrt{3}  - 1}

On rationalizing the denominator, we get

\rm :\longmapsto\:x = \dfrac{40}{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}

\rm :\longmapsto\:x = \dfrac{40( \sqrt{3}  + 1)}{  {( \sqrt{3} )}^{2}  -  {1}^{2} }

\rm :\longmapsto\:x = \dfrac{40( \sqrt{3}  + 1)}{ 3 - 1}

\rm :\longmapsto\:x = \dfrac{40( \sqrt{3}  + 1)}{2}

\rm :\longmapsto\:x = 20( \sqrt{3} + 1)

\rm :\longmapsto\:x = 20( 1.732 + 1)

\rm :\longmapsto\:x = 20( 2.732)

\bf\implies \:x = 54.64 \: m

Hence,

\boxed{ \rm \:Height \: of \: tower,  \: AB = 40 + x = 40 + 54.64 = 94.64 \: m}

and

\boxed{ \rm \:Horizontal \: distance,  \: AC = y= x = 40 \: m}

Attachments:
Similar questions