Math, asked by madihaahmd6, 11 months ago

from a point P(2,3) tangents PA,PB are drawn to the circle x^2+y^-6x+8y-1=0.The equation of the line joining the mid points of PA and PB is?

Answers

Answered by amitnrw
6

Given : from a point P(2,3) tangents PA,PB are drawn to the circle x²+y²-6x+8y-1=0.

To Find : The equation of the line joining the mid points of PA and PB is?

Solution:

x²+y²-6x+8y-1=0

=> (x - 3)² - 9 + (y + 4)² - 16  - 1  =0

=> (x - 3)²  + (y + 4)² = 26

=> (x - 3)²  + (y + 4)² = (√26)²

center O( 3 , - 4)

radius = √26

P = ( 2, 3)

PA² + OA²  = OP²   , PB² + OB²  = OP²

OP² = (3 - 2)² + (-3 - 4)²   =  50

OA² =  OB²  = 26

PA² =  PB² = 24

(x - 2)² + (y - 3)² = 24

(x - 3)²  + (y + 4)² = 26

=> -2x + 5 + 14y + 7  = 2

=> -2x + 14y = -10

=> -x + 7y  =  - 5

=> x = 7y + 5

(7y + 5 - 3)²  + (y + 4)² = 26

=> (7y + 2)² +  (y + 4)² = 26

=> 49y²  + 28y + 4 + y² + 8y + 16  = 26

=> 50y²  + 36y - 6  =0

=> 25y² + 18y - 3 = 0

=> y =( - 18 ±  24.98)/50

=> y =  0.1396 ,  -0.8596

    x = 5.9772  ,  -1.0172

( 5.9772 , 0.1396 )  and ( -1.0172  ,  -0.8596)

P = ( 2 , 3)

mid point of PA &  PB

( 3.9886 , 1.5698)  and (0.4914 , 1.0702)

(3.99 , 1.57) and (0.49 , 1.07)

Slope = ( -0.5/-3.5)  = 1/7

y  - 1.57 = (1/7)(x - 3.99)

=> 7y - 10.99 = x - 3.99

=> 7y  = x  + 7

equation of the line joining the mid points of PA and PB

Learn More:

Equation of a line passing through the point(2, -1) and whose ...

https://brainly.in/question/13954090

Find the equation of the line passing through the origin and which ...

https://brainly.in/question/13207917

Attachments:
Similar questions