Math, asked by mayank741426, 7 months ago

From a point p which is at a distance of 13cm from the centre O of a circle of radius of 5 cm ,the pair of tangents PQ and PR to the circle are drawn .The. the area of quadrilateral PQOR is​

Answers

Answered by pandaXop
82

Area = 60 cm²

Step-by-step explanation:

Given:

  • A point P is at a distance of 13 cm from centre O.
  • Radius of circle is 5 cm.
  • Two tangents i.e PQ & PR are drawn from P.

To Find:

  • Area of quadrilateral PQOR ?

Solution: Let P be a point at a distance of 13 cm from O.

We know that the tangent and radius are perpendicular at point of contact and tangents drawn from a external points are also equal to each other.

Here we have

  • PO = 13 cm
  • PR = PQ
  • OR = OQ = 5 cm

In right angled triangle PQR , by Pythagoras theorem

  • OQ = Base
  • OP = Hypotenuse
  • PQ = Perpendicular

= +

\implies{\rm } OP² = OQ² + PQ²

\implies{\rm } 13² = 5² + PQ²

\implies{\rm } 169 = 25 + PQ²

\implies{\rm } 169 25 = PQ

\implies{\rm } 144 = PQ

\implies{\rm } 12 = PQ

Similarly PR will be also 12 cm.

Now area of quadrilateral PQOR will be

  • ar(∆POQ + ∆POR)

Ar of triangle = 1/2 × Base × Height

  • Base = OP = 5 cm
  • Height = PQ = 12 cm

  • { since, there are two triangles with same height and base }

\implies{\rm } 2 × 1/2 × 5 × 12

\implies{\rm } 5 × 12

\implies{\rm } 60 cm²

Hence, area of quadrilateral PQOR will be 60 cm².

Attachments:

TheMoonlìghtPhoenix: Perfect!
Answered by rocky200216
105

\huge\bf{\underline{\underline{\gray{GIVEN:-}}}}

  • As shown in the figure,

  1. The distance between point P to the center of the circle O is '13 cm' .
  2. Radius of the circle is '5 cm' .
  3. A pair of tangents PQ and PR to the circle are drawn .

 \\

\huge\bf{\underline{\underline{\gray{TO\:FIND:-}}}}

  • The area of quadrilateral PQOR .

 \\

\huge\bf{\underline{\underline{\gray{SOLUTION:-}}}}

☞︎︎︎ See the attachment figure .

☯︎ It is clearly seen that, tangent PQ and PR are perpendicular to OQ & OR respectively .

☯︎ Hence both ∆POQ & ∆POR are right angled triangle .

\bf{\implies\:PQ\:=\:\sqrt{(OP)^2\:-\:(OQ)^2}\:} \\

\rm{\implies\:PQ\:=\:\sqrt{(13)^2\:-\:(5)^2}\:} \\

\rm{\implies\:PQ\:=\:\sqrt{169\:-\:25}\:} \\

\rm{\implies\:PQ\:=\:\sqrt{144}\:} \\

\bf\blue{\implies\:PQ\:=\:12\:cm\:} \\

\huge\red\checkmark \mathcal{\purple{Area\:of\:\triangle{POQ}\:=\:\dfrac{1}{2}\:\times{PQ}\times{OQ}\:}} \\

\rm{\implies\:Area\:of\:\triangle{POQ}\:=\:\dfrac{1}{2}\:\times{12}\times{5}\:} \\

\rm{\implies\:Area\:of\:\triangle{POQ}\:=\:6\times{5}\:} \\

\bf\green{\implies\:Area\:of\:\triangle{POQ}\:=\:30\:cm^2\:} \\

Similarly,

\huge\red\checkmark \mathcal{\purple{Area\:of\:\triangle{POR}\:=\:\dfrac{1}{2}\:\times{PR}\times{OR}\:}} \\

\rm{\implies\:Area\:of\:\triangle{POR}\:=\:\dfrac{1}{2}\times{12}\times{5}\:} \\

\rm{\implies\:Area\:of\:\triangle{POR}\:=\:6\times{5}\:} \\

\bf\green{\implies\:Area\:of\:\triangle{POR}\:=\:30\:cm^2\:} \\

__________________________

Area of quadrilateral PQOR = Area of (∆POQ + ∆POR)

⇛ Area of quadrilateral PQOR = 30 cm² + 30 cm²

⇛ Area of quadrilateral PQOR = 60 cm²

___________________________

\huge\red\therefore The area of quadrilateral PQOR is "60cm²" .

Attachments:
Similar questions