Math, asked by MILIMANGLAM, 1 year ago

from a solid cylinder of height 36 cm and radius 14 cm a conical cavity of radius 7 cm and height 24 cm is drilled out find the volume and the total surface area of remaining solid

Answers

Answered by mapsvanshi3741
41

Answer:

Vol. 20944 cm^3 , S.A. 4796 cm^2

Step-by-step explanation:

Vol. of Cylinder = 22/7* Radius^2 * Height , Total SURFACE AREA OF CYLINDER = 2*(22/7)*RADIUS(radius + height )

Vol. of cone = (1/3) (22/7) (Radius^2 ) * Height

Lateral Surface area of cone = (22/7)*radius*slant height

Vol. of Cylinder= (22/7) * 14 * 14 *36

Vol of Cone = (1/3) (22/7) *7*7*24

Vol. of cylinder- Vol. of cone = (22/7) (14*14*36 - (7*7*24/3)

                                                     22/7( 7056- 392)

                                                    22/7*6664

                                                        20944 cm^3

Tsa of remaining solid = 44/7*14(14+36) + 22/7*7*25 - (22/7 * 7 *7 )                                                      

                                        4400- 154 +  550

                                       4796 cm^2

L = root(h^2+r^2)

L = root (625)

L = 25 cm


Please cross check the calculations once again as I am not good at calculations.

If this solution helped you please marked it as THE BRAINLIEST

Answered by naweedrahman
23

Step-by-step explanation:

I hope you got it,

Volume = 20944 cm3

T.S.A. = 4796 cm2

All the best..................

Attachments:
Similar questions