Math, asked by jaysheelsk, 11 months ago

from a window 60m high above of an orginisation working for consumer protection angle of depression of two cars on the straight road leading to the foot of building are 30degree and 60degree if one car is exactly behind other find distance between two cars (use root 3=1.73)​

Answers

Answered by SillySam
32

Let Car 1 be A and Car 2 be B.

Height of building = CD = 60m .

angle A =30° and Angle B = 60°

Tan 60° = \sf\frac{Side\: opposite\: to \:angle}{Side \:adjacent\: to \:angle}

\sqrt{3}=\sf\frac{cd}{bc}

\sqrt{3} = \frac{60}{bc}

 bc = \frac{60}{ \sqrt{3} }

Rationalising the denominator

bc = \frac{60}{ \sqrt{3} } \times \frac{\sqrt{3}}{ \sqrt{3} }

bc = \frac{60 \sqrt{3} }{3}

BC = 20√3 m

Tan 30° = \sf\frac{Side \:opposite\: to\: angle}{Side \:adjacent \:to\: angle}

 \frac{1}{ \sqrt{3} } = \frac{60}{ac}

ac = 60 \sqrt{3}

AB + BC = 60√3

AB + 20√3 = 60√3

AB =60√3 -20√3

AB =40√3 m

AB =40×1.73

AB =69.2 m

So the distance between two cars is

69.2 meters.

Attachments:

jaysheelsk: duiz
Answered by arnav134
0

Step-by-step explanation:

Let Car 1 be A and Car 2 be B.

Height of building = CD = 60m .

angle A =30° and Angle B = 60°

Tan 60° = \sf\frac{Side\: opposite\: to \:angle}{Side \:adjacent\: to \:angle}

Sideadjacenttoangle

Sideoppositetoangle

\sqrt{3}=\sf\frac{cd}{bc}

3

=

bc

cd

\sqrt{3} = \frac{60}{bc}

3

=

bc

60

bc = \frac{60}{ \sqrt{3} }bc=

3

60

Rationalising the denominator

bc = \frac{60}{ \sqrt{3} } \times \frac{\sqrt{3}}{ \sqrt{3} }bc=

3

60

×

3

3

bc = \frac{60 \sqrt{3} }{3}bc=

3

60

3

BC = 20√3 m

Tan 30° = \sf\frac{Side \:opposite\: to\: angle}{Side \:adjacent \:to\: angle}

Sideadjacenttoangle

Sideoppositetoangle

\frac{1}{ \sqrt{3} } = \frac{60}{ac}

3

1

=

ac

60

ac = 60 \sqrt{3}ac=60

3

AB + BC = 60√3

AB + 20√3 = 60√3

AB =60√3 -20√3

AB =40√3 m

AB =40×1.73

AB =69.2 m

So the distance between two cars is

69.2 meters.

Similar questions