From the figure (2) given below, find the values of : tan x, cos y, cosec²y, 5/sin x + 3/sin y - 3cot y.
Answers
Answer:
I think this is a related question so u can do it with this ex
Explanation:
Answer:
(i) tan x = 5/12
(ii) cos y = 16/20
(iii) cosec2 y - cot2y = 1
iv) 5/sin x+3/sin y-3 cot y = -22/5
Step-by-step explanation:
AD = \sqrt{AC^{2} - DC^{2} }
AC
2
−DC
2
= \sqrt{(13^{2} - 5^{2})}
(13
2
−5
2
)
= \sqrt{169 - 25}
169−25
= \sqrt{144}
144
= 12
DC = 5
BD = 21-5 = 16
AB = \sqrt{AD^{2} + BD^{2} }
AD
2
+BD
2
= \sqrt{(12^{2} + 16^{2})}
(12
2
+16
2
)
= \sqrt{144 + 256}
144+256
= \sqrt{400}
400
= 20
BC = 21
AC = 13
------------------------------
(i) tan x = DC / AD = 5/12
-----------
(ii) cos y = BD/AB = 16/20
--------------
(iii) cosec2 y - cot2y
= \frac{1}{sin^{2} y}
sin
2
y
1
- \frac{cos^{2} y}{sin^{2} y}
sin
2
y
cos
2
y
= \frac{1-cos^{2}y }{sin^{2} y}
sin
2
y
1−cos
2
y
= \frac{sin^{2} y}{sin^{2} y}
sin
2
y
sin
2
y
= 1
-------------
(iv)5/sin x+3/sin y-3 cot y
= \frac{5}{sinx}
sinx
5
+ \frac{3}{siny}
siny
3
- \frac{3*cosy}{siny}
siny
3∗cosy
= \frac{5*siny + 3*sinx - 3*cosy}{sinx * siny}
sinx∗siny
5∗siny+3∗sinx−3∗cosy
= (5*AD/AB + 3*DC/AC - 3*BD/AB) / (DC/AC * AD/AB)
= (5*12/20 + 3*5/13 - 3* 16/20) / 5/13 * 12/20
= (60/20 + 15/13 - 48/20) / 60/260
= -22/5