Math, asked by PragyaTbia, 1 year ago

From the following distribution, calculate mean deviation about mean
\begin{tabular}{|l|c|c|c|c|c|} Marks & 10 & 20 & 30 & 40 & 50 \\ No. of Students & 5 & 7 & 15 & 13 & 10 \end{tabular}

Answers

Answered by hukam0685
0
To find the mean deviation,first calculate the mean of the given distribution

\begin{table}[] \begin{tabular}{|l|l|l|l|l|} \cline{1-5} x_{i} &amp; \begin{tabular}[c]{@{}l@{}}Frequency\\ f_{i}\end{tabular} &amp; (x_{i}f_{i})&amp; <br />| x_{i}-33.2| &amp; f_{i}|x_{i}-\bar x| \\ \cline{1-5} 10 &amp; 5 &amp; 50 &amp; 23.2 &amp; 116 \\ \cline{1-5} 20 &amp; 7 &amp; 140 &amp; 13.2 &amp; 92.4 \\ \cline{1-5} 30 &amp; 15 &amp; 450 &amp; 3.2 &amp; 48 \\\cline{1-5} 40 &amp; 13 &amp; 520 &amp; 6.8 &amp; 88.4 \\ \cline{1-5} 50 &amp; 10 &amp; 500 &amp; 16.8 &amp; 168 \\\cline{1-5} Total &amp; 50 &amp; 1660 &amp; &amp; 512.2 \\ \cline{1-5} \end{tabular} \end{table}

N = \Sigma \: f = 5 + 7 + 15 + 13 + 10 \\ \\ = 50 \\ \\ \bar x = \frac{1660}{50} = 33.2 \\ \\

Mean Deviation about mean

MD(\bar x) = \frac{\Sigma \: f_{i} |x_{i} - \bar x| }{N} \\ \\ = \frac{512.2}{50} \\ \\ =10.256 \\ \\

Hence mean deviation about mean is 10.256
Hope it helps you
Similar questions