Math, asked by ramjeetchauhan51906, 6 months ago

from the quadratic equations from the roots 3and -10
explanation​

Answers

Answered by amitkumar44481
77

Answer :

x² + 7x - 30 = 0.

SolutioN :

Let,

  • Sum Of Zeros ( α + β )
  • Product Of Zeros ( α × β )

For Sum of roots.

→ a + b

→ 3 - 10

→ - 7

For Product of roots.

→ ab

→ 3 * - 10

→ - 30.

_____________________

We have, Formula.

→ K [ x² - Sx + P ]

Where as,

  • K Content terms.
  • P Product of roots.
  • S Sum of roots.

→ K[ x² - ( - 7 )x + ( - 30 ) ]

→ K[ x² + 7x - 30 ]

Therefore, the required quadratic equation is x² + 7x - 30.

_______________________________

More InformatioN :

We have, Quadratic Equation.

★ x² + 7x - 30 = 0.

Compare With General Equation.

 \tt   \star  \:  \:  \:  \: \: a {x}^{2}  + bx + c = 0.

Where as,

  • a = 1.
  • b = 7.
  • c = - 30.

So,

 \tt \bullet \:  \:  \:  \:  \: Sum \:  of \: roots=   \dfrac{ - b}{a}

 \tt \bullet \:  \:  \:  \:  \: Product \:  of \:  roots =   \dfrac{c}{a}

Also,

  • α = 3. ( given )
  • β = - 10. ( given )

Putting given value.

> Sum Of roots.

 \tt  \mapsto  \alpha  +  \beta  =  \dfrac{ - b}{a}

 \tt  \mapsto  3  + ( - 10) =  \dfrac{ - 7}{1}

 \tt  \mapsto   - 7=  - 7

LHS = RHS.

____________________________

> Product Of roots.

 \tt  \mapsto  \alpha   \beta  =  \dfrac{ c}{a}

 \tt  \mapsto  3 \times  ( - 10)  =  \dfrac{  - 30}{1}

 \tt  \mapsto   - 30 =   - 30.

LHS = RHS.


mddilshad11ab: Perfect:)
Answered by Anonymous
4

Answer:

Answer :

x² + 7x - 30 = 0.

SolutioN :

Let,

Sum Of Zeros ( α + β )

Product Of Zeros ( α × β )

For Sum of roots.

→ a + b

→ 3 - 10

→ - 7

For Product of roots.

→ ab

→ 3 * - 10

→ - 30.

_____________________

We have, Formula.

→ K [ x² - Sx + P ]

Where as,

K Content terms.

P Product of roots.

S Sum of roots.

→ K[ x² - ( - 7 )x + ( - 30 ) ]

→ K[ x² + 7x - 30 ]

Therefore, the required quadratic equation is x² + 7x - 30.

Similar questions