Math, asked by sakshiRiYa2423, 9 months ago

From the top a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Answers

Answered by sanjeevk28012
9

The height of tower is 7 ( 1 + √3)   meters  

Step-by-step explanation:

Given as :

The height of building = H = 7 meters

The height of cable = h meters

The angle of elevation of the top of a cable tower = 60°

The angle of depression of its foot =  45°

The distance between tower and cable = x meters

According to question

From figure

In Δ AEB

Tan angle = \dfrac{perpendicular}{base}

Tan  60° = \dfrac{AB}{BE}

√3  = \dfrac{h-7}{x}

Or,  x = \dfrac{h-7}{\sqrt{3} }                  ...........1

Again

In Δ ECD

Tan angle = \dfrac{perpendicular}{base}

Tan  45° = \dfrac{ED}{CD}

1 = \dfrac{7}{x}

Or,  x = 7                         ..............2

Solving eq 1 and eq 2

\dfrac{h-7}{\sqrt{3} }   =  7

Or, h - 7 = 7√3

∴    h = 7 + 7√3

Or,  h = 7 ( 1 + √3)   meters

So, Height = h = 7 ( 1 + √3)   meters

Hence, The height of tower is 7 ( 1 + √3)   meters    Answer

Attachments:
Answered by yakshitakhatri2
3

\huge\fbox{\color{blue}{\colorbox{yellow}{\tt{Answer ♥︎}}}}

Let, AB be the building of height 7 m and EC be the height of tower.

A is the point from where elevation of tower is 60° and the angle of depression of its foot is 45°.

\sf{EC = DE + CD}

\sf{Also, CD = AB = 7 m  \: and \:  BC = AD}

\sf\bold{\underline{\underline{According \:  to  \: question,}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{In \:  right  \: ∆ ABC,}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\sf{\pink{tan45° = \frac{AB}{BC}  }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\rightarrow{1 =  \frac{7}{BC} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\underline{\underline{\sf{\bold{\purple{\rightarrow{BC = 7m = AD}}}}}}}

Also,

 \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{In  \: right \:  ∆ ADE,}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\sf{\pink{tan 60° = \frac{DE}{AD}  }}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf\rightarrow{  \sqrt{3}  =  \frac{DE}{7}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\underline{\underline{\sf{\bold{\purple{\rightarrow{DE = 7 \sqrt{3} m}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\boxed{\sf{\pink{Height \:  of  \: tower = EC =DE + CD  = (7 \sqrt{3}  + 7)m}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\underline{\underline{\sf{\bold{\purple{∴Height  \: of  \: tower = 7(  \sqrt{3}  + 1)m}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Mark as brainliest ✔

Attachments:
Similar questions