From your own imagination, create a picture (even if
hypothetical) wherein you relate a process with any concept or
law in thermodynamics. (Note: Do not copy paste from
anywhere. The idea of no two students should be same)
Answers
Answer:
One of the most important things we can do with heat transfer is to use it to do work for us. Such a device is called a heat engine. Car engines and steam turbines that generate electricity are examples of heat engines. Figure 2 shows schematically how the first law of thermodynamics applies to the typical heat engine.
It is impossible to devise a system where Qout = 0, that is, in which no heat transfer occurs to the environment.
Figure a shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The heat Q sub in is shown to be transferred to the gas in the cylinder as shown by a bold arrow toward it. The force of the gas on the moving cylinder with the piston is shown as F equals P times A shown as a vector arrow pointing toward the right. The change in internal energy is marked in the diagram as delta U sub a equals Q sub in. Figure b shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The force of the gas has moved the cylinder with the piston by a distance d toward the right. The change in internal energy is marked in the diagram as delta U sub b equals negative W sub out. The piston is shown to have done work by change in position, marked as F d equal to W sub out. Figure c shows a piston attached to a movable cylinder which is attached to the right of another gas filled cylinder. The piston attached to the cylinder is shown to reach back to the initial position shown in figure a. The distance d is traveled back and heat Q sub out is shown to leave the system as represented by an outward arrow. The force driving backward is shown as a vector arrow pointing to the left, labeled F prime. F prime is shown less than F. The work done by the force F prime is shown by the equation W sub in equal to F prime times d.
Figure 3. (a) Heat transfer to the gas in a cylinder increases the internal energy of the gas, creating higher pressure and temperature. (b) The force exerted on the movable cylinder does work as the gas expands. Gas pressure and temperature decrease when it expands, indicating that the gas’s internal energy has been decreased by doing work. (c) Heat transfer to the environment further reduces pressure in the gas so that the piston can be more easily returned to its starting position.
The illustrations above show one of the ways in which heat transfer does work. Fuel combustion produces heat transfer to a gas in a cylinder, increasing the pressure of the gas and thereby the force it exerts on a movable piston. The gas does work on the outside world, as this force moves the piston through some distance. Heat transfer to the gas cylinder results in work being done. To repeat this process, the piston needs to be returned to its starting point. Heat transfer now occurs from the gas to the surroundings so that its pressure decreases, and a force is exerted by the surroundings to push the piston back through some distance. Variations of this process are employed daily in hundreds of millions of heat engines. We will examine heat engines in detail in the next section. In this section, we consider some of the simpler underlying processes on which heat engines are based.
PV diagrams clearly illustrate that the work done depends on the path taken and not just the endpoints. This path dependence is seen in Figure 7a, where more work is done in going from A to C by the path via point B than by the path via point D. The vertical paths, where volume is constant, are called isochoric processes. Since volume is constant, ΔV = 0, and no work is done in an isochoric process. Now, if the system follows the cyclical path ABCDA, as in Figure 7b, then the total work done is the area inside the loop. The negative area below path CD subtracts, leaving only the area inside the rectangle. In fact, the work done in any cyclical process (one that returns to its starting point) is the area inside the loop it forms on a PV diagram, as Figure 7c illustrates for a general cyclical process. Note that the loop must be traversed in the clockwise direction for work to be positive—that is, for there to be a net work output.