Froma right circular cylinder of radius 7 cm, height 24cm of conical cavity of same base radius and of same height hollowed out. find the volume and whole surface of remaining solid
Answers
Given :-
Height of cylinder/cone (h)= 24cm
Radius of cylinder/cone (r)= 7cm
To find:-
We have to find out the Volume and surface area of remaining solid
Solution:-
Volume of remaining solid = Volume of cylinder- Volume of cone.
● Surface area of remaining solid = CSA of cylinder+ CSA of cone + Area of top (circular part)
Now surface Area :-
Answer:
\huge\red{\boxed{\sf AnSwer}}
AnSwer
Given :-
Height of cylinder/cone (h)= 24cm
Radius of cylinder/cone (r)= 7cm
To find:-
We have to find out the Volume and surface area of remaining solid
Solution:-
Volume of remaining solid = Volume of cylinder- Volume of cone.
\begin{gathered}\begin{gathered}:\implies\sf\ V.\ of\ remaining\ solid = \pi r^2 h-\dfrac{1}{3}\pi r^2\ h \\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{3}\pi r^2 h\big(3-1\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid = \dfrac{1}{\cancel3}\times \dfrac{22}{\cancel{7}}\times \cancel{7}\times 7\times \cancel{24}\times \big(2\big)\\ \\ \\ :\implies\sf\ V.\ of\ remaining\ solid =22\times 7\times 8\times 2\\ \\ \\ :\implies\underline{\boxed{\pink{\sf\ Volume\ of\ remaining\ solid = 2624cm^3}}}\end{gathered}\end{gathered}
:⟹ V. of remaining solid=πr
2
h−
3
1
πr
2
h
:⟹ V. of remaining solid=
3
1
πr
2
h(3−1)
:⟹ V. of remaining solid=
3
1
×
7
22
×
7
×7×
24
×(2)
:⟹ V. of remaining solid=22×7×8×2
:⟹
Volume of remaining solid=2624cm
3
● Surface area of remaining solid = CSA of cylinder+ CSA of cone + Area of top (circular part)
\sf\bigstar\ \ Surface\ Area= 2\pi r h+ \pi r \ell + \pi r^2★ Surface Area=2πrh+πrℓ+πr
2
\begin{gathered}\begin{gathered}\bullet\sf \ell= \sqrt{r^2+h^2}\\ \\ \longmapsto\sf \ell= \sqrt{(7)^2+(24)^2}\\ \\ \longmapsto\sf \ell= \sqrt{49+576}\\ \\ \longmapsto\sf \ell= \sqrt{625}\\ \\ \underline{\boxed{\sf\ \ell= 25cm}}\end{gathered}\end{gathered}
∙ℓ=
r
2
+h
2
⟼ℓ=
(7)
2
+(24)
2
⟼ℓ=
49+576
⟼ℓ=
625
ℓ=25cm
Now surface Area :-
\begin{gathered}\begin{gathered}:\implies\sf\ Surface\ Area= \pi r\big\lgroup 2h+\ell+r\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= \dfrac{22}{\cancel{7}}\times \cancel{7}\big\lgroup (2\times 24)+ 25+7\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times \big\lgroup 48+32\big\rgroup\\ \\ \\ :\implies\sf\ Surface\ Area= 22\times 80\\ \\ \\ :\implies\underline{\boxed{\purple{\sf\ Surface\ area\ of\ remaining\ solid= 1760cm^2}}}\end{gathered}\end{gathered}
:⟹ Surface Area=πr
⎩
⎪
⎧
2h+ℓ+r
⎭
⎪
⎫
:⟹ Surface Area=
7
22
×
7
⎩
⎪
⎧
(2×24)+25+7
⎭
⎪
⎫
:⟹ Surface Area=22×
⎩
⎪
⎧
48+32
⎭
⎪
⎫
:⟹ Surface Area=22×80
:⟹
Surface area of remaining solid=1760cm
2