Full explanation on periodic table
chemistry
Answers
The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron configuration, and recurring chemical properties. The structure of the table shows periodic trends. The seven rows of the table, called periods, generally have metals on the left and nonmetals on the right. The columns, called groups, contain elements with similar chemical behaviours. Six groups have accepted names as well as assigned numbers: for example, group 17 elements are the halogens; and group 18 are the noble gases. Also displayed are four simple rectangular areas or blocks associated with the filling of different atomic orbitals.
The 18-column form of the periodic table
A detailed interactive version is found in § Overview below; an interactive 32-column form, after § External links.
The elements from atomic numbers 1 (hydrogen) through 118 (oganesson) have all been discovered or synthesized, completing seven full rows of the periodic table. The first 94 elements, hydrogen through plutonium, all occur naturally, though some are found only in trace amounts and a few were discovered in nature only after having first been synthesized.[n 1] Elements 95 to 118 have only been synthesized in laboratories, nuclear reactors, or nuclear explosions. The synthesis of elements having higher atomic numbers is currently being pursued: these elements would begin an eighth row, and theoretical work has been done to suggest possible candidates for this extension. Numerous synthetic radioisotopes of naturally occurring elements have also been produced in laboratories.
The organization of the periodic table can be used to derive relationships between the various element properties, and also to predict chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev published the first recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within the table. Most of his forecasts soon proved to be correct, culminating with the discovery of Ga (Gallium) and Ge (Germanium) in 1875 and 1886 respectively, which corroborates his predictions. Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely used in chemistry, nuclear physics and other sciences.