Math, asked by bambardeshubham63, 11 months ago

function f(x) = x - 3x + 4 has minimum value at x = ...​

Answers

Answered by sanketj
0

f(x) = x² - 3x + 4

for minimum value of f(x),

 \frac{df(x)}{dx} = 0 \\  \\ so \\  \frac{df(x)}{dx}   \\ =  {f}^{ |} (x) \\ =  \frac{d}{dx}  ( {x}^{2}  - 3x + 4) \\  =  \frac{d {x}^{2} }{dx}  -  \frac{d(3x)}{dx}  +  \frac{d(4)}{dx}  \\  = 2 {x}^{2 - 1}  - 3 \times 1 {x}^{1 - 1}  + 0 \\  = 2 {x}^{1}  - 3 {x}^{0}   = 2x  -  3 \times 1 = 2x - 3 \\  = 2x - 3

hence,

2x - 3 = 0 \\  \:  \:  \:  \:  \:  \:  \:  \: 2x = 3 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{3}{2}

Hence, at x = 3/2, f(x) assumes the minimum value.

Similar questions