Physics, asked by banerjeeshri2254, 1 year ago

Fundamental component of output voltage should be low or high ?

Answers

Answered by gsaianimesh
0

Fundamental Frequency

A Fundamental Waveform (or first harmonic) is the sinusoidal waveform that has the supply frequency. The fundamental is the lowest or base frequency, ƒ on which the complex waveform is built and as such the periodic time, Τ of the resulting complex waveform will be equal to the periodic time of the fundamental frequency.

Let’s consider the basic fundamental or 1st harmonic AC waveform as shown.

fundamental waveform

Where: Vmax is the peak value in volts and ƒ is the waveforms frequency in Hertz (Hz).

We can see that a sinusoidal waveform is an alternating voltage (or current), which varies as a sine function of angle, 2πƒ. The waveforms frequency, ƒ is determined by the number of cycles per second. In the United Kingdom this fundamental frequency is set at 50Hz while in the United States it is 60Hz.

Harmonics are voltages or currents that operate at a frequency that is an integer (whole-number) multiple of the fundamental frequency. So given a 50Hz fundamental waveform, this means a 2nd harmonic frequency would be 100Hz (2 x 50Hz), a 3rd harmonic would be 150Hz (3 x 50Hz), a 5th at 250Hz, a 7th at 350Hz and so on. Likewise, given a 60Hz fundamental waveform, the 2nd, 3rd, 4th and 5th harmonic frequencies would be at 120Hz, 180Hz, 240Hz and 300Hz respectively.

So in other words, we can say that “harmonics” are multiples of the fundamental frequency and can therefore be expressed as: 2ƒ, 3ƒ, 4ƒ, etc. as shown.

Complex Waveforms Due To Harmonics

harmonics and harmonic waveforms

Note that the red waveforms above, are the actual shapes of the waveforms as seen by a load due to the harmonic content being added to the fundamental frequency.

The fundamental waveform can also be called a 1st harmonics waveform. Therefore, a second harmonic has a frequency twice that of the fundamental, the third harmonic has a frequency three times the fundamental and a fourth harmonic has one four times the fundamental as shown in the left hand side column.

The right hand side column shows the complex wave shape generated as a result of the effect between the addition of the fundamental waveform and the harmonic waveforms at different harmonic frequencies. Note that the shape of the resulting complex waveform will depend not only on the number and amplitude of the harmonic frequencies present, but also on the phase relationship between the fundamental or base frequency and the individual harmonic frequencies.

Similar questions