Math, asked by adarsh7791, 1 year ago

Fx = x+1/x prove that (fx)³=f(x³)+3f(1/x)

Answers

Answered by rakeshmohata
39
Hope u like my process
======================
 =  >  \bf \: f(x) = x +   \frac{1}{x}  \\  \\  =  > \bf f( {x}^{3}) =  {x}^{3}  +  \frac{1}{ {x}^{3} } \\  \\  =  >  \bf \: f( \frac{1}{x}  ) =  \frac{1}{x}  + x = x. \frac{1}{x}(x +  \frac{1}{x} )  \\  \\  =  >  \bf \: (f(x)) ^{3}   =  {(x +  \frac{1}{x}) }^{3}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \bf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3x. \frac{1}{x} (x +  \frac{1}{x} ) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \bf \: f( {x}^{3} ) + 3f( \frac{1}{x} )
Hence, proved.

__________________________

Hope this is ur required answer

Proud to help you
Similar questions