English, asked by suhanipandey51603, 2 days ago

गणिताचा बाऊ कशाने कमी झाला होता?

अ . फडणीसांची हास्यचित्र

ब. हास्यचित्र पाहून

क. व्यंगचित्र पाहून.
please tell me the answer of this question who tell me the answer of this question so I will mark him as a premier league please tell​

Answers

Answered by anupamashish71
0

Answer:

it is not a answer it is wrong answer it is answer of physics

We have been given

abx {}^{2} + (b {}^{2} - ac)x - bc = 0abx

2

+(b

2

−ac)x−bc=0

abx {}^{2} + b2x - acx - bc = 0abx

2

+b2x−acx−bc=0

bx(ax + b) - c(ax + b) = 0bx(ax+b)−c(ax+b)=0

(ax + b)(bx - c) = 0(ax+b)(bx−c)=0

Therefore,

ax + b = 0ax+b=0

ax = -0ax=−0

x = \frac{ - b}{a}x=

a

−b

Or,

bx - c = 0bx−c=0

bx = cbx=c

c = \frac{c}{b}c=

b

c

hance. \: x = \frac{ - b}{a} \: or \: c = \frac{c}{b}hance.x=

a

−b

orc=

b

c

Explanation:

Solution−

Given quadratic equation is

\begin{gathered}\sf \: {abx}^{2} + ( {b}^{2} + ac)x + bc = 0 \\ \\ \end{gathered}

abx

2

+(b

2

+ac)x+bc=0

\begin{gathered}\sf \: {abx}^{2} + {b}^{2}x + acx + bc = 0 \\ \\ \end{gathered}

abx

2

+b

2

x+acx+bc=0

\begin{gathered}\sf \:( {abx}^{2} + {b}^{2}x )+ (acx + bc )= 0 \\ \\ \end{gathered}

(abx

2

+b

2

x)+(acx+bc)=0

\begin{gathered}\sf \: bx(ax + b) + c(ax + b) = 0 \\ \\ \end{gathered}

bx(ax+b)+c(ax+b)=0

\begin{gathered}\sf \:(ax + b) \: (bx + c) = 0 \\ \\ \end{gathered}

(ax+b)(bx+c)=0

\begin{gathered}\sf \:ax + b = 0 \: \: \:or \: \: \: bx + c = 0 \\ \\ \end{gathered}

ax+b=0orbx+c=0

\begin{gathered}\sf \:ax = - b\: \: \:or \: \: \: bx = - c \\ \\ \end{gathered}

ax=−borbx=−c

\begin{gathered}\sf \: \implies \: x \: = \: - \: \dfrac{b}{a} \: \: \: or \: \: \: x \: = \: - \: \dfrac{c}{b} \\ \\ \end{gathered}

⟹x=−

a

b

orx=−

b

c

\rule{190pt}{2pt}

Additional information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions