गणिताचा बाऊ कशाने कमी झाला होता?
अ . फडणीसांची हास्यचित्र
ब. हास्यचित्र पाहून
क. व्यंगचित्र पाहून.
please tell me the answer of this question who tell me the answer of this question so I will mark him as a premier league please tell
Answers
Answer:
it is not a answer it is wrong answer it is answer of physics
We have been given
abx {}^{2} + (b {}^{2} - ac)x - bc = 0abx
2
+(b
2
−ac)x−bc=0
abx {}^{2} + b2x - acx - bc = 0abx
2
+b2x−acx−bc=0
bx(ax + b) - c(ax + b) = 0bx(ax+b)−c(ax+b)=0
(ax + b)(bx - c) = 0(ax+b)(bx−c)=0
Therefore,
ax + b = 0ax+b=0
ax = -0ax=−0
x = \frac{ - b}{a}x=
a
−b
Or,
bx - c = 0bx−c=0
bx = cbx=c
c = \frac{c}{b}c=
b
c
hance. \: x = \frac{ - b}{a} \: or \: c = \frac{c}{b}hance.x=
a
−b
orc=
b
c
Explanation:
Solution−
Given quadratic equation is
\begin{gathered}\sf \: {abx}^{2} + ( {b}^{2} + ac)x + bc = 0 \\ \\ \end{gathered}
abx
2
+(b
2
+ac)x+bc=0
\begin{gathered}\sf \: {abx}^{2} + {b}^{2}x + acx + bc = 0 \\ \\ \end{gathered}
abx
2
+b
2
x+acx+bc=0
\begin{gathered}\sf \:( {abx}^{2} + {b}^{2}x )+ (acx + bc )= 0 \\ \\ \end{gathered}
(abx
2
+b
2
x)+(acx+bc)=0
\begin{gathered}\sf \: bx(ax + b) + c(ax + b) = 0 \\ \\ \end{gathered}
bx(ax+b)+c(ax+b)=0
\begin{gathered}\sf \:(ax + b) \: (bx + c) = 0 \\ \\ \end{gathered}
(ax+b)(bx+c)=0
\begin{gathered}\sf \:ax + b = 0 \: \: \:or \: \: \: bx + c = 0 \\ \\ \end{gathered}
ax+b=0orbx+c=0
\begin{gathered}\sf \:ax = - b\: \: \:or \: \: \: bx = - c \\ \\ \end{gathered}
ax=−borbx=−c
\begin{gathered}\sf \: \implies \: x \: = \: - \: \dfrac{b}{a} \: \: \: or \: \: \: x \: = \: - \: \dfrac{c}{b} \\ \\ \end{gathered}
⟹x=−
a
b
orx=−
b
c
\rule{190pt}{2pt}
Additional information
Nature of roots :-
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac