general solution of :
1.sin x=sin y
2.cos x=cos y
3.tan x=tan y
Answers
Answered by
0
Answer:
Correct option is
C
y=(n−m)2π+(−1)n4π+(−1)m+121sin−1(−53);m,nϵZ
D
x=(m+n)2π+(−1)n4π+(−1)m21sin−1(−53);m,nϵZ
We have
⇒5sinxcosy=1 and 4tanx=tany
⇒5sinxcosy=1 and 4sinxcosy=sinycosx
⇒sinxcosy=51 and cosxsiny=54
⇒ sinxcosy+cosxsiny=1
and sinx<
Similar questions