Geometrical proof of sin(A+B)
Answers
Answered by
0
Here are two for the price of one (using Euler's formula):
cos(A+B)+isin(A+B)≡ei(A+B)≡eiA×eiBcos(A+B)+isin(A+B)≡ei(A+B)≡eiA×eiB
≡[cos(A)+isin(A)][cos(B)+isin(B)]≡[cos(A)+isin(A)][cos(B)+isin(B)]
≡[cos(A)cos(B)−sin(A)sin(B)]+i[sin(A)cos(B)+cos(A)sin(B)]≡[cos(A)cos(B)−sin(A)sin(B)]+i[sin(A)cos(B)+cos(A)sin(B)]
Now equate imaginary parts to give the result for sin(A+B)sin(A+B) (and, if you want, equate real parts to give the result for cos(A+B)cos(A+B)).
cos(A+B)+isin(A+B)≡ei(A+B)≡eiA×eiBcos(A+B)+isin(A+B)≡ei(A+B)≡eiA×eiB
≡[cos(A)+isin(A)][cos(B)+isin(B)]≡[cos(A)+isin(A)][cos(B)+isin(B)]
≡[cos(A)cos(B)−sin(A)sin(B)]+i[sin(A)cos(B)+cos(A)sin(B)]≡[cos(A)cos(B)−sin(A)sin(B)]+i[sin(A)cos(B)+cos(A)sin(B)]
Now equate imaginary parts to give the result for sin(A+B)sin(A+B) (and, if you want, equate real parts to give the result for cos(A+B)cos(A+B)).
Answered by
10
Required Answer:-
In the geometrical proof of the addition formulae we are assuming that α, β and (α + β) are positive acute angles. But these formulae are true for any positive or negative values of α and β. Now we will prove that, sin (α + β) = sin α cos β + cos α sin β; where α and β are positive acute angles and α + β < 90°.
Hope it helps you ☺️
Similar questions