Give a conclusion for methods of charging a conductor
Answers
Answered by
3
The process of supplying the electric charge (electrons) to an object or losing the electric charge (electrons) from an object is called charging. An uncharged object can be charged in different ways.
Charging by friction
Charging by conduction
Charging by induction
Answered by
2
Answer:
One common demonstration performed in a physics classroom involves the induction charging of two metal spheres. The metal spheres are supported by insulating stands so that any charge acquired by the spheres cannot travel to the ground. The spheres are placed side by side (see diagram i. below) so as to form a two-sphere system. Being made of metal (a conductor), electrons are free to move between the spheres - from sphere A to sphere B and vice versa. If a rubber balloon is charged negatively (perhaps by rubbing it with animal fur) and brought near the spheres, electrons within the two-sphere system will be induced to move away from the balloon. This is simply the principle that like charges repel. Being charged negatively, the electrons are repelled by the negatively charged balloon. And being present in a conductor, they are free to move about the surface of the conductor. Subsequently, there is a mass migration of electrons from sphere A to sphere B. This electron migration causes the two-sphere system to be polarized (see diagram ii. below). Overall, the two-sphere system is electrically neutral. Yet the movement of electrons out of sphere A and into sphere B separates the negative charge from the positive charge. Looking at the spheres individually, it would be accurate to say that sphere A has an overall positive charge and sphere B has an overall negative charge. Once the two-sphere system is polarized, sphere B is physically separated from sphere A using the insulating stand. Having been pulled further from the balloon, the negative charge likely redistributes itself uniformly about sphere B (see diagram iii. below). Meanwhile, the excess positive charge on sphere A remains located near the negatively charged balloon, consistent with the principle that opposite charges attract. As the balloon is pulled away, there is a uniform distribution of charge about the surface of both spheres (see diagram iv. below). This distribution occurs as the remaining electrons in sphere A move across the surface of the sphere until the excess positive charge is uniformly distributed. (This distribution of positive charge on a conductor was discussed in detail
Similar questions