Math, asked by mohdwahaj00, 1 year ago

Give Δ ABC~ΔPQR if AB/PQ=1/3 then find arΔABC/arΔPQR

Answers

Answered by sarthakverma115
0
The ratio of the similar triangles is equal to the square of the ratio of its corresponding sides.

This is the main concept applied.
Attachments:
Answered by chaitu251798
0

triangle \:  \: abc \:  \: similar \:  \: to \:  \: triangle \: pqr \\  \frac{ab}{pq}  =  \frac{1}{3} \\  \frac{ar(triangle \:  \:  \: abc)}{ar(triangle \:  \:  \:  \: pqr)}  =   \frac{ {ab}^{2} }{ {pq}^{2} }  .....reason \: ..(by \: theroem \: area \: of \: similar \: triangle) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ {1}^{2} }{ {3}^{2} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{9} \\ mark \: as \: brainliest
Similar questions