Math, asked by Anonymous, 11 months ago

Give answer if you know only :


\displaystyle \text{How many solutions the equation $log_x216+log_{2x}64=3 $ has?}


Option are :

a . One irrational solution

b . No solution is a prime number

c . Two real solution

d . One integral solution


No spam need contain quality answer with great explanation.


Answers

Answered by pratyush4211
14

Answer:

 log_x{2} {}^{16} +log_{2x}64=3

It can be written as

 log_{x}(2 {}^{2 {}^{4} }   )  +  log_{2x}(2 {}^{6} )  = 3 \\  \\  \frac{4}{2}  log_{x}(2)  + 6 log_{2x}(2)  = 3 \\  \\ 2 \times  log_{x}(2)  + 6 \times  log_{2x}(2)  = 3 \\  \\

As We Know log_a(b)=1/log_b(a)

2 \times   \frac{1}{log_{2}(x)}   + 6 \times  \frac{1}{ log_{2}(2 \times x) }  = 3 \\  \\  \frac{2}{ log_{2}(x) }  +  \frac{6}{ log_{2}(2) +  log_{2}(x)  }  \\  \\  \frac{2}{ log_{2}(x) }  +  \frac{6}{1 +  log_{2}(x) }

Let log_2(x)=t

 \frac{2}{t }  +  \frac{6}{1 + t}  \\  \\  \frac{2(1 + t) + 6t}{t(t + 1)}  = 3 \\  \\   2 + 2t + 6t = 3t(t + 1) \\  \\ 2 + 8t = 3 {t}^{2}  + 3t \\  \\  {3t}^{2}  + 3t - 8t - 2 \\  \\  {3t}^{2}  - 5t - 2 \\  \\  {3t}^{2}  - 6t  + t - 2  \\  \\ 3t(t - 2) + 1(t - 2) \\  \\ (3t + 1)(t - 2)

Now

3t+1=0

3t=-1

t=-1/3

T=log_2(x)

 log_{2}(x)  =  \frac{1}{3}  \\  \\  x = 2 {}^{ \frac{1}{3} }   \\  \\ x =   \sqrt[3]{2}

Now

t-2=0

t=2

 log_{2}(x)  = 2 \\  \\ x =  {2}^{2}  \\  \\ x = 4

We get Two Value of X=³√2,4

Now They are Real Number

So Option C is Correct

C.Two Real solution

Answered by ram5556
1

Answer:

C.two real solutions

Thanks .

Similar questions