Math, asked by modiprakash1974, 6 months ago


 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}
a = ? , b = ?​

Answers

Answered by MagicalBeast
2

Given :

  \sf \: \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a \:  +  \: b \sqrt{7}

To find :

  • Value of a & b

Method used :

  • Firstly rationalising denominator on LHS, and then comparing it with RHS

Identity used :

  • (a+b)² = a² + b² + 2ab
  • (a+b)(a-b) = a² - b²

Solution :

LHS =>

Multiply and divide by (3+√7)

we get,

 \dfrac{(3 +  \sqrt{7 } ) \times (3 +   \sqrt{7})} {(3 -  \sqrt{7} ) \times (3 +  \sqrt{7} )}  \\  \\   =   \dfrac{ {(3 +  \sqrt{7}) }^{2} }{( {3}^{2}) - (  { \sqrt{7} )}^{2}  }  \\  \\  =  \dfrac{ ({3})^{2} + ( { \sqrt{7} )}^{2} + (2 \times 3 \times  \sqrt{7} )  }{9 - 7}  \\  \\  =  \dfrac{9 + 7 +  \: 6 \sqrt{7} }{2}  \\  \\  =  \dfrac{16 + 6 \sqrt{7} }{2}  \\  \\  =  \dfrac{16}{2}  +  \dfrac{6 \sqrt{7} }{2}  \\  \\  = 8 + 3 \sqrt{7}

Also , RHS = a + b√7

we know that LHS = RHS

=> 8 + 3√7 = a + b√7

on comparing

we get,

a = 8

b = 3

ANSWER :

  • a = 8
  • b = 3
Similar questions