Physics, asked by Anonymous, 9 months ago

give answer with full explainatio ❗



A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius
1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in the
string❓What is the maximum speed with which the stone can be whirled around if
the string can withstand a maximum tension of 200 N ❓​

Answers

Answered by Siddharta7
7

Answer:

Maximum speed of the stone is 34.64 m/s.

Explanation:

Given,

Mass of the stone, m = 0.25 kg

Radius of the circle, r = 1.5 m

Number of revolution per second, n = 40/60 = (2/3) rps

Angular velocity, ω = v/r = 2πn ………………….(i)

The centripetal force for the stone is provided by the tension T, in the string, i.e.

T = mrω²

  = 0.25 * 1.5 * (2πn)²

  = 0.25 * 1.5 * (2 * 3.14 * 2/3)²

  = 6.57 N

Then,

Given Maximum tension in the string = 200 N.

T_{max} = \frac{mv^2_{max}}{r}

v_{max} = \sqrt{T_{max}} * \frac{r}{m}

⇒ √200 * 1.5/0.25

⇒ √1200

⇒ 34.64 m/s

Therefore, the maximum speed of the stone is 34.64 m/s.

Hope it helps! Mark As Brainliest if possible!

Answered by LoverLoser
12
\boxed{\bf{\blue{Find \longrightarrow }}}

Tension in the string

the maximum speed with which the stone can be whirled around if the string can withstand a maximum tension of 200 N

\boxed{\bf{\pink{Given \longrightarrow }}}

Mass of the stone [m] = 0.25 kg

Radius  [r] = 1.5m

Revolution= 40 rev./min

\boxed{\bf{\red{Formulas \ used \longrightarrow }}}

\sf{\green{ \omega =2\pi n}}

\sf{\green{T=m \omega^2r}}

where,

ω = Angular velocity.

n= no. of revolution.

T= Tension in the string.

m= Mass.

\boxed{\bf{\orange{SoLution \longrightarrow }}}

Number of revolution per second, \sf{n=40/60=2/3}

The centripetal force on stone is provided by the tension T, in the string,

that means,

\sf{T=m \omega^2r}

Put values in the formula we get,

\sf{ T =0.25\times 1.5\times (2\times 3.14\times \dfrac{2}{3} )^2 }

\bf{ T=6.57 N}

_________________________

Maximum tension in the string,  Tension maximum = 200 N

\sf{ T_{max}= \dfrac{mv^2_{max}}{r}}

\sf{ v_{max} = (\dfrac{T_{max} \ r }{m} )^\dfrac{1}{2} }

\sf{ v_{max} = ( \dfrac{200 \times 1.5}{0.25}) ^\dfrac{1}{2} }

\sf{v_{max} = ( \dfrac {300}{0.25} )^\dfrac{1}{2}}

\sf{v_{max}= (1200)^\dfrac{1}{2} }

\sf {v_{max}= 34.64}

\bf{\underline{\therefore, max.\ speed\ of\ the\ stone\ is\ 34.64 m/s.}}

________________________
Similar questions