Math, asked by yashika1951, 10 months ago

give answer with solution... ​

Attachments:

Answers

Answered by Anonymous
5

 \large\bf\underline{Question :-}

  • Find the zeroes of √3x² + 10x + 7√3.

 \large\bf\underline{Given:-}

  • p(x) = √3x² + 10x + 7√3

 \large\bf\underline {To \: find:-}

  • zeroes of the given polynomial.

 \huge\bf\underline{Solution:-}

 \bf \:  \dag \:  \rm \: p(x) =  \sqrt{3}  {x}^{2}  + 10x + 7 \sqrt{3}  \\  \\  \dashrightarrow \rm \:  \sqrt{3}  {x}^{2}  + 3x + 7x + 7 \sqrt{3}  \\  \\ \dashrightarrow \rm \:  \sqrt{3} x(x +  \sqrt{3} ) + 7(x +  \sqrt{3} ) \\  \\  \dashrightarrow \rm \: ( \sqrt{3} x + 7)(x +  \sqrt{3} ) \\  \\  \dashrightarrow \bf \: x =   \frac{ - 7}{ \sqrt{3} }  \: or \:  \: x =  -  \sqrt{3}

 \underline{ \bf \dag \:  \: Verification :  - }

★ p(x) = √3x² + 10x + 7√3

  • a = √3
  • b = 10
  • c = 7√3

Let α and β are the zeroes of the given polynomial.

let α = -7/√3 and β = -√3

  • sum of zeroes = -b/a

 \rightarrowtail \:  \rm \frac{ - 7}{ \sqrt{3} }  +( -  \sqrt{3} ) =  \frac{ - 10}{ \sqrt{3} }  \\ \\ \rightarrowtail \:  \rm \frac{ - 7 - 3}{ \sqrt{3} }  =  \frac{ - 10}{ \sqrt{3} }  \\  \\ \rightarrowtail \:  \rm \frac{ - 10}{ \sqrt{3} }  =  \frac{ - 10}{ \sqrt{3} }

  • Product of zeroes = c/a

\rightarrowtail \:  \rm \frac{ - 7}{ \sqrt{3} }  \times (  -  \sqrt{3} ) =  \frac{ 7 \sqrt{3} }{ \sqrt{3} }  \\  \\ \rightarrowtail \:  \rm \frac{7 \sqrt{3} }{ \sqrt{3} }  =  \frac{7 \sqrt{3} }{ \sqrt{3} }  \\  \\ \rightarrowtail \:  \rm7 = 7

LHS = RHS

hence Verified

Answered by Anonymous
4

your answer refer to the attachment.

Attachments:
Similar questions