Math, asked by mirzakir, 1 year ago

give derivation of heron's formula

Answers

Answered by abhi178
1
according to properties of triangle ,
sinA/2 = √{(s -b)(s -c)/bc }
cosA/2 =√{s (s - a)/bc}

ar∆ = 1/2bc.sinA = 1/2casinB = 1/2absinC

ar∆ = 1/2bcsinA

= 1/2bc (2sinA/2.cosA/2)

put above value ,

ar∆ = 1/2bc { 2√s(s-a)(s-b)(s-c)/b²c²}
=√s(s-a)(s-b)(s-c)
hence proved

Answered by Anonymous
7

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

DERIVATION OF THE HERON'S FORMULA

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{ SOLUTION }}

\Large\mathcal\orange{HERON'S \: FORMULA }

\mathfrak\pink{\implies let \: semi \: perimeter \:  = x</p><p>}

\mathfrak\pink{\implies x =  \frac{a \:  +  \: b + c \: }{2}}

\mathfrak\red{area \: of \: triangle \: by \: herons \: formula}

\mathfrak\red{\implies\sqrt{x(x - a)(x - b)(x - c) \: } }

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions