Give examples of polynomial p(x),g(x) and r(x), which satisfy the division algorithm and
deg r(x) = 0
Answers
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✪✪ QUESTION ✪✪ ⎟⎟
Give examples of polynomial p(x),g(x) and r(x), which satisfy the division algorithm and
deg r(x) = 0
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
⎟⎟ ✰✰ ANSWER ✰✰ ⎟⎟
{HERE REFER THE IMAGE}
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
||✪✪ QUESTION ✪✪||
Give examples of polynomial p(x),g(x) and r(x), which satisfy the division algorithm and deg r(x) = 0 ?
|| ✰✰ ANSWER ✰✰ ||
According to EUCLID division lemma : - a = bq + r where 0 ≤ r < b
So, Let P(x), g(x) , q(x), and r(x) satisfy EUCLID division lemma .
→ P(x) = g(x) × Q(x) + r(x) (where, 0≤ r(x) < g(x) )
_____________________
❶ when deg p(x) = deg q(x)
We know the formula :-
→ Dividend = Divisor x quotient + Remainder
So,
→ p(x) = g(x) × q(x) + r(x)
So, here the degree of quotient will be equal to degree of dividend when the divisor is constant.
Lets Assume The divison of 9x² + 6x + 3 by 3.
→ p(x) = 9x² + 6x + 3
→ g(x) = 3
→ q(x) = 3x² + 2x + 1
→ r(x) = 0
Degree of p(x) and q(x) is the same as 2.
Checking for division algorithm Now :-
→ p(x) = g(x) × q(x) + r(x)
→ (9x² + 6x + 3) = 3(3x² + 2x + 1) + 0
→ 9x² + 6x + 3 = 9x² + 6x + 3 + 0
→ 9x² + 6x + 3 = 9x² + 6x + 3
Hence, we can say That, the division algorithm is satisfied...
______________________________
❷ when deg q(x) = deg r(x)
Lets Assume The Division of 5x³ - 2x² + 12x by x².
→ p(x) = 5x³ - 2x² + 12x
→ g(x) = x²
→ q(x) = (5x - 2)
→ r(x) = 12x
Here , Degree of q(x) is same as Degree of r(x).
Checking for division algorithm Now :-
→ p(x) = g(x) × q(x) + r(x)
→ 5x³ - 2x² + 12x = x² × (5x - 2) + 12x
→ 5x³ - 2x² + 12x = 5x³ - 2x² + 12x
Hence, we can say That, the division algorithm is satisfied...
______________________________
❸ when deg r(x) = 0 .
Degree of remainder will be 0 when remainder comes to a constant.
Let us assume the division of 143x⁴ - 643x³ - 1226x² - 440x + 5072 by (x + 1).
→ p(x) = 143x⁴ - 643x³ - 1226x² - 440x + 5072 .
→ g(x) = (x + 1)
→ q(x) = (143x³ - 786x² - 440x)
→ r(x) = 5072
Here, Degree of r(x) is 0.
Checking for division algorithm Now :-
→ p(x) = g(x) × q(x) + r(x)
→ 143x⁴ - 643x³ - 1226x² - 440x + 5072 = (x + 1)(143x³ - 786x² - 440x) + 5072
→ 143x⁴ - 643x³ - 1226x² - 440x + 5072 = (143x⁴ - 786x³ - 440x² + 143x³ - 786x² - 440x) + 5072
→ 143x⁴ - 643x³ - 1226x² - 440x + 5072 = 143x⁴ - 643x³ - 1226x² - 440x + 5072 .