Math, asked by champawatrajnandini, 4 months ago

give me answer fast​

Attachments:

Answers

Answered by adjdjdj
0

Answer:

Let α and β are zeros of required quadratic polynomial.

⇒ α+β=4 ---- ( 1 ) [ given ]

⇒ αβ=1 ----- ( 2 ) [ Given ]

The required polynomial,

x

2

−(α+β)x+(αβ)=0

Now, using ( 1 ) and ( 2 )

⇒ x

2

−4x+1=0

Answered by ILLUSTRIOUS27
2

Given

  • Sum of quadratic polynomial is 4
  • Product of quadratic polynomial is 1

To Find

  • Quadratic polynomial

Concept used

  • Required polynomial=k[x²-(S)x+P]

Solution

We have sum and product of quadratic polynomial and we need to find the polynomial

So generally we use

Required polynomial

k[x²-(S)x+P

Here

  • Sum(S)=4
  • Product(P)=1

Putting values

 \rm \: k \left[  {x}^{2} - (s) x + p \right] \\  \\  \implies \rm \: k\left[  {x}^{2}  - (4)x + 1 \right] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \rm \: k\left[  {x}^{2}  - 4x + 1 \right] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \boxed{ \bf \: polynomial =  {x}^{2} - 4x + 1 } \\  \rm \:where \: k = 1

So the required polynomial is x²-4x+1

Now

Verification

We know

 \rm \:  \alpha  +  \beta  =  \dfrac{ - b}{a} \\  \\  \bf \: putting \: values \\  \\  \implies \: 4 =  \frac{ 4}{1}   \\  \\  \boxed{ \bf \: LHS = RHS}  \\  \rm \: hence \: proved

It is the way to check your answer

Similar questions