give me answer plzzzzzzz
Attachments:
Answers
Answered by
1
This is ur ans hope it will help you in case of any doubt comment below
Attachments:
Answered by
1
Heya Dear
_____________________________________________________________
Question : In a ΔABC , AD⊥BC and AD² = BD x CD , prove that ΔABC is right angled triangle .
_____________________________________________________________
Solution :
Given : In triangle ABC , AD is perpendicular to BC and AD² = BD x CD
To prove : BAC = 90°
Proof : In right triangles ADB and ADC
we have , AB² = AD² + BD² ______(1)
and AC² = AD² + DC² ______(2)
From (1) and (2) , we get
AB² + AC² = 2AD² x BD² + DC²
AB² + AC² = 2BD x CD + BD² + CD² { AD² = BD x CD ( given) }
AB² + AC² = (BD + CD)²
AB² + AC² = BC²
Hence triangle ABC is a triangle right angled at A .
BAC = 90°
Hence proved
____________________________________________________________
_____________________________________________________________
Question : In a ΔABC , AD⊥BC and AD² = BD x CD , prove that ΔABC is right angled triangle .
_____________________________________________________________
Solution :
Given : In triangle ABC , AD is perpendicular to BC and AD² = BD x CD
To prove : BAC = 90°
Proof : In right triangles ADB and ADC
we have , AB² = AD² + BD² ______(1)
and AC² = AD² + DC² ______(2)
From (1) and (2) , we get
AB² + AC² = 2AD² x BD² + DC²
AB² + AC² = 2BD x CD + BD² + CD² { AD² = BD x CD ( given) }
AB² + AC² = (BD + CD)²
AB² + AC² = BC²
Hence triangle ABC is a triangle right angled at A .
BAC = 90°
Hence proved
____________________________________________________________
TheEdward:
click on red hearts ^_^
Similar questions