Math, asked by prashantjain111, 1 year ago

Give me solution of this question plz

Attachments:

Answers

Answered by HappiestWriter012
14
Hey there!

{4}^{x + 1}  +  {4}^{1 - x}  = 10 \\  \\  {4}^{x}  \times  {4}^{1}  +  \frac{ {4}^{1} }{ {4}^{x} }  = 10 \\  \\ 4( {4}^{x}  +  \frac{1}{ {4}^{x} } ) = 10 \\  \\

Let 4^x = m.

4(m + 1/m) = 10

4(m² + 1) = 10m

4m² - 10m + 4 = 0

2m² - 5m + 2 = 0

2m² -4m - m + 2 = 0

2m ( m - 2) - 1 ( m - 2 ) = 0

( 2m - 1 ) ( m - 2 ) = 0

2m = 1 , m = 2

m = 1/2 , m = 2

Taking m = 1/2

4^x = 1/2

2^2x = 2^-1

2x = -1

x = -1/2

or,

m = 2

4^x = 2

2^2x = 2

2x = 1

x = 1/2

Therefore , x = 1/2 or -1/2

Anonymous: Good
Answered by BrainlyVirat
9
Here is the answer

The answer to the question is given in the attachment.

Next steps are down here

 \bf{2k - 1 = 0 \:  \:  \:  \:  \:           or \:  \:  \:          k - 2 = 0}

 \bf{2k = 1 \:  \:  \:  \:  \:  \:   \:  \:                or \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:           k = 2}


 \bf{k =  \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:               or \:  \:  \:  \:  \:  \:  \:         k = 2}


Now,
 \bf{4 {}^{x}  =  \frac{1}{2} } \\  \\ \bf{ 2 {}^{2x}  =  {2}^{ - 1} }

 \bf{2x =  - 1}

 \bf{x =  \frac{ - 1}{2}}

 \bf{Or }

 \bf{4 {}^{x}  = 2} \\  \\  \bf{(2 {}^{2} ) {}^{x} = 2}


 \bf{2x = 1} \\  \\ \bf{ x =  \frac{1}{2} }

Thus ,

We got 2 values of x

 \bf{x =  \frac{ - 1}{2}   \:  \: or \: \:   \frac{1}{2} }

Thanks!!
Attachments:

Anonymous: Good
BrainlyVirat: Thanks, :)
Rahmathnisha177: 1/2
Similar questions