Math, asked by muthuprabhahar, 10 months ago

give me the answer ​

Attachments:

Answers

Answered by mahendrarajbhar83867
0

Answer:

Option c is correct answer..........

Answered by gautamkumar118
0

Step-by-step explanation:

 =  \frac{1}{ \sqrt{2} + 1 }  +  \frac{1}{ \sqrt{3} +  \sqrt{2}  }  +  \frac{1}{ \sqrt{4}  +  \sqrt{3} }  +  \frac{1}{ \sqrt{5}  +  \sqrt{4} }  +  \frac{1}{ \sqrt{6}  +  \sqrt{5 } }  +  \frac{1}{ \sqrt{7}  +  \sqrt{6} }  +  \frac{1}{ \sqrt{8}  +  \sqrt{7} }  +  \frac{1}{ \sqrt{9} +  \sqrt{8}  }  \\ rationalise \: the \: denominator \\  = (\frac{1}{ \sqrt{2} + 1 } \times  \frac{\sqrt{2}  -  1}{\sqrt{2}  -  1}  ) +  (\frac{1}{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{\sqrt{3}  -  \sqrt{2}}{\sqrt{3}  -   \sqrt{2}} ) + ( \frac{1}{ \sqrt{4}  +  \sqrt{3} } \times  \frac{\sqrt{4}   -   \sqrt{3}}{\sqrt{4}   -   \sqrt{3}})   + ( \frac{1}{ \sqrt{5}  +  \sqrt{4} }  \times  \frac{\sqrt{5}   -   \sqrt{4}}{\sqrt{5}   -  \sqrt{4}})  +  (\frac{1}{ \sqrt{6}  +  \sqrt{5 } }  \times  \frac{\sqrt{6}   -   \sqrt{5 } }{\sqrt{6}   -   \sqrt{5 } }  )+  (\frac{1}{ \sqrt{7}  +  \sqrt{6} }  \times  \frac{\sqrt{7}   -   \sqrt{6}}{\sqrt{7}   -   \sqrt{6}} ) +  (\frac{1}{ \sqrt{8}  +  \sqrt{7} }  \times  \frac{ \sqrt{8} -  \sqrt{7}  }{ \sqrt{8} -  \sqrt{7}  }  )+(  \frac{1}{ \sqrt{9} +  \sqrt{8}  } \times  \frac{ \sqrt{9}  -  \sqrt{8} }{\sqrt{9}  -  \sqrt{8} } ) \\  =  \frac{\sqrt{2}  -  1}{2 - 1}  +  \frac{ \sqrt{3}  -  \sqrt{2} }{3 - 2}  +  \frac{ \sqrt{4}  -  \sqrt{3} }{4 - 3}  +  \frac{ \sqrt{5} -  \sqrt{4}  }{5 - 4}  +  \frac{ \sqrt{6}  -  \sqrt{5} }{6 - 5}  +  \frac{ \sqrt{7} -  \sqrt{6}  }{7 - 6}  +  \frac{ \sqrt{8} -  \sqrt{7}  }{8 - 7}  +  \frac{ \sqrt{9} -  \sqrt{8}  }{9 - 8}  \\  =  (\sqrt{2}   - 1) + ( \sqrt{3} -  \sqrt{2}  ) + ( \sqrt{4}  -  \sqrt{3} ) + ( \sqrt{5}  -  \sqrt{4} ) + ( \sqrt{6}  -  \sqrt{5} ) + ( \sqrt{7}  -  \sqrt{6} ) + ( \sqrt{8}  -  \sqrt{7} ) + ( \sqrt{9}  -  \sqrt{8} ) \\  =  - 1 +  \sqrt{9}

Similar questions